

DOCUMENT DELIVERABLE

28/02/2025

D3.4 - XR2Learn enablers (v2)

WP3 – XR Technology PUSH

February 2025

Ref. Ares(2025)1620695 - 28/02/2025

2

D3.4 - XR2Learn enablers

Author UM

Work Package WP3 – XR Technology PUSH

Delivery Date 28.02.2025

Due Date 28.02.2025

Classification Public

Status of deliverable

Action/role Name Date (dd.mm.yyyy)

Submitted by Ioannis Chatzigiannakis (CNIT) 28.02.2025

Responsible (WP leader) LS

Approved by (internal

reviewer)
Filisia Melissari and Ioannis

Chatzigiannakis
18.02.2025

Revision history

Date (dd.mm.yyyy) Author(s) Comments

10.12.2024 UM Initial template

24.01.2025 LS, SUPSI, UM Partner contributions

07.02.2025 UM Edited for internal reviewers

24.02.2025 UM, LS, SUPSI Applying revisions

3

D3.4 - XR2Learn enablers

28.02.2025 UM Final version for submission

Author(s) contact information

Name Organization E-mail

Enrique Hortal, Annanda

Sousa, Bulat Khaertdinov
Maastricht University (UM)

enrique.hortal@maastrichtuni

versity.nl

mailto:enrique.hortal@maastrichtuniversity.nl
mailto:enrique.hortal@maastrichtuniversity.nl

4

D3.4 - XR2Learn enablers

- TABLE OF CONTENTS

- Table of Contents ... 4

- List of Figures and Tables ...6

- List of Abbreviations .. 9

- EXECUTIVE SUMMARY .. 10

1. INTRODUCTION ... 11

2. Authoring Tool: Enabler 1 ... 14

2.1. INTERACT: Authoring Tool 14

2.1.1. Authoring Tool Summary up to M14 .. 14

2.1.2. Authoring Tool Updates M15-M26 ... 14

2.1.2.1. Transition to OpenXR 15

2.1.2.2. Custom Avatars 15

2.1.2.3. Simulation Features 16

2.1.2.4. Platform Compatibility Updates 16

2.1.2.5. Usability Enhancements 17

2.1.2.6. Feedback from the Community 18

3. Personalization Enablers (Enablers 2-6) .. 20

3.1. Summary and Updates 20

3.1.1. Personalization Enablers Summary up to M14 ... 20

3.1.1.1. Preliminary Research 20

3.1.1.2. System Design and Initial Version 20

3.1.2. Personalization Enablers Update M15-M26 .. 22

3.1.2.1. Improvements and Integration 22

3.2. Training Tools (Enablers 2-4) 23

3.2.1. Training Tools Summary up to M14 .. 23

3.2.2. Training Tools Updates M15-M26.. 24

3.3. Inference Tools (Enabler 5) 25

3.3.1. Inference Tools Summary up to M14 .. 25

3.3.2. Inference Tools Updates M15-M26 ... 26

3.3.2.1. Inference Data Processing Component 28

3.3.2.2. Multimodal Fusion Component 29

5

D3.4 - XR2Learn enablers

3.4. Personalization Tool (Enabler 6) 31

3.4.1. Personalization Tool Summary up to M14 .. 31

3.4.2. Personalization Tool Updates M15-M26 ... 31

3.5. Additional Enablers 34

3.5.1. Personalization Dashboard .. 34

3.5.2. Command Line Interface (CLI) .. 35

3.5.3. Personalization Enablers Template ... 37

3.6. Research Publications 38

4. Data Acquisition .. 39

4.1. Magic XRoom: Data Collection Tool 39

4.1.1. Magic XRoom Summary up to M14 ... 39

4.1.2. Magic XRoom Updates M15-M26 ... 40

4.2. Data Collection 42

4.2.1. Data Collection Summary up to M14 .. 42

4.2.2 Data Collection Updates M15-M26 ... 43

4.2.2.1. Data Collection Protocol 43

4.2.2.2. Collected Data Analysis 44

4.2.2.3. Training Models with Collected Data 49

5. Integration Enablers and Beacon Applications .. 51

5.1. Personalization Integration Template 52

5.1.1. Description .. 52

5.1.2. Prerequisites .. 53

5.1.3. Installation .. 53

5.1.4. Basic User Manual ... 53

5.2. Integration of Magic XRoom and Personalization Enablers 55

5.3. Data Collection Module/Plugin 57

5.3.1. Description .. 57

5.3.2. Prerequisites .. 57

5.3.3. Installation ... 58

5.4. Future Work in Integration of Beacon Applications with Personalization Enablers
 58

6. CONCLUSION .. 59

6

D3.4 - XR2Learn enablers

- LIST OF FIGURES AND TABLES

Table 1. Enablers status: summary and progress 11

Table 2. List of software delivered with their GitHub repository links and licenses 13

Figure 1. Authoring tool key features 14

Figure 2. Manipulating a virtual screwdriver with MetaQuest 3 Hand tracking 15

Figure 3. Customizable avatars to the use case 16

Figure 4. A more comprehensive and intuitive user interface 18

Figure 5. Using In-Editor tutorials (IET) Unity package to create interactive editor
tutorials and tooltips, helping the user to find their way within Unity’s dense
interface. 18

Figure 6. A high-level overview of the personalization enablers in M14. 21

Figure 7. Progress in integrating modalities with the personalization enablers’
components in M14. 21

Figure 8. Progress in integrating modalities with the Personalization Enablers’
components in M26. 23

Figure 9. A high-level overview of the Personalization Enablers in M26, with body
tracking fully integrated, evaluation component eliminated from Inference Tools,
which now implements a near real-time inference. The Personalization Dashboard is
included in the diagram. 23

Table 3. Training tools released versions and dates. 25

Figure 10. Inference Tools components state in M14 (top) and Inference Tools
components state in M26 (bottom). Before, the communication between components
was performed by writing and reading stored files with data. Currently, all
components exchange messages in near real-time using the Pub/Sub protocol for
asynchronous communication. Also, the current Inference Tools version has its
Preprocessing component, which allows near real-time inference latency. 27

Table 4. Inference tools released versions and dates. 28

Figure 11. Multimodal Fusion for bio-measurement and body tracking modalities
(selection of modalities is based on the two modalities from the Magic XRoom data
format fully integrated into the Personalization Enablers). 30

Figure 12. Theory of Flow 32

Figure 13. Personalization Tool overview: inputs and output 32

Figure 14. Message format the Personalization tool generates, including emotion
information and suggestion of the next activity level. 33

Table 5. Personalization Tool released versions and dates. 34

Figure 15. Screenshots displaying Personalization Dashboard Version 1 (top), Version
2 (middle) and Version 3 (bottom). 35

7

D3.4 - XR2Learn enablers

Table 6. Command Line Interface released versions and dates. 37

Figure 16. Screenshot displaying Magic XRoom’s virtual room with the four interactive
scenarios. 39

Figure 17. View of the stacking cubes scenario 40

Figure 18. Detailed view of the Tower of Hanoi scenario and the interactive handle
used to adjust the desk height 40

Figure 19. Detail of the updated user interface showing the feedback panel, which
includes a (continuous) slider instead of 3 (discrete) buttons, easing the selection of
the user emotion. 41

Table 7. Magic XRoom released versions and dates. 42

Table 8. Data collection pilots’ statistics. 42

Figure 20. Preliminary analysis of the pilot session data showing the distribution of
engagement levels 43

Table 9. Gender distribution for the first data collection pilots. 43

Table 10. Data collection overview. 44

Table 11. Gender and age statistics. 45

Figure 21. Proficiency of users with electronic devices and familiarity with Virtual
Reality (upper – UM, lower – SUPSI). 45

Figure 22. Comfortability and satisfaction levels during data collection (upper – UM,
lower – SUPSI). 46

Figure 23. Physical discomfort experienced during or after data collection(left – UM,
right – SUPSI). 47

Figure 24. Distribution of continuous engagement levels per subject (left – UM, right
– SUPSI). 47

Figure 25. Distribution of continuous engagement levels for all subjects (left – UM,
right – SUPSI). 48

Figure 26. Distribution of categorical engagement levels for all subjects (upper – UM,
lower – SUPSI). 49

Figure 27. Distribution of categorical engagement levels for each scenario in Magic
XRoom (left – UM, right– SUPSI). 49

Table 12. Results of model evaluation. All metrics were computed on the test
subjects, which data were unseen during training. 50

Figure 28. A high-level overview of the integration between enablers and beacon
applications. Number 1 represents the functionality of collecting and writing user
data, while number 2 represents the functionality of sending and receiving messages
from and to the Personalization Enablers. 51

Figure 29. The graphical interface of the Personalization Integration Template (green
numbers are not part of the software’s interface; Section 5.1.4 describes their
functionalities) 52

8

D3.4 - XR2Learn enablers

Figure 30. Messages format the Personalization Integration Template sends when
communicating with the Personalization Tool, 1) message indicating the start of
activity (top), 2) message indicating the end of activity (bottom). 54

Figure 31. Message format the Personalization Integration Template expects to
receive from the Personalization Tool. 54

Figure 32. Hardware setup with two machines for the demonstration of the
integration of Magic XRoom and the Personalization Enablers. These machines are
connected to the same internal network. 55

Figure 33. Integration of Magic XRoom and the Personalization Enablers. The top left
shows the user playing Magic XRoom while wearing sensors and the user’s view. The
bottom left shows a diagram of the information exchanged by the components in the
demonstration. The top right shows the Personalization Dashboard (as illustrated in
Figure 15) . The bottom right shows a command terminal with the inference
preprocessing running in the Windows machine. 57

Figure 34. Data Collection module workflow 57

9

D3.4 - XR2Learn enablers

- LIST OF ABBREVIATIONS

BA Beacon application

KPI Key performance indicator

SSL Self-supervised learning

WP Work package

XR Extended reality

Partners’ names and acronyms

CNIT CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE
TELECOMUNICAZIONI

F6S F6S NETWORK IRELAND LIMITED

MAG MAGGIOLI SPA

LS LIGHT AND SHADOWS

SYN SYNELIXIS SOLUTIONS SA

SUPSI SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA

UM UNIVERSITEIT MAASTRICHT

HOU HELLENIC OPEN UNIVERSITY

EADTU EUROPEAN ASSOCIATION OF DISTANCE TEACHING UNIVERSITIES

EITM EIT MANUFACTURING SOUTH SRL

10

D3.4 - XR2Learn enablers

- EXECUTIVE SUMMARY

This deliverable, D3.4 XR2Learn Enablers Version 2, provides an update on the
development of innovative tools to facilitate the creation and integration of Extended
Reality (XR) learning applications enhanced by affective computing. The proposed
enablers serve two main purposes: to reduce the workload involved in developing XR
learning applications and to promote the personalization and enhancement of the
learning experience in a seamless and effortless manner. In the context of Task 3.2,
we have made improvements to the following enablers, which are categorized into
three groups:

● Authoring Tool: enabler 1, a key component that simplifies the creation of XR
applications specifically tailored for educational purposes.

● Personalization Enablers: enablers 2-6 and additional enablers are components
for adding automatic personalization capability to XR applications.

○ Enablers 2-4: These enablers focus on the development of tools for
automatic emotion recognition, i.e., engagement, boredom and
frustration, utilizing various input data modalities.

○ Enabler 6: This enabler combines the capabilities of the automatic
emotion detection components (enablers 2-5) with contextual
information to generate personalized suggestions for adapting learning
materials. This adaptation, for example, adjusting the challenge level,
aims to make the learning experience more engaging and effective.

○ Command Line Interface: a simplified interface that streamlines access
to the functionalities of enablers 2-6.

○ Personalization Dashboard: A web-based graphical interface designed to
visualize the functionalities and integration of Personalization Enablers.

● Data Collection Enabler: Magic XRoom, this innovative VR software, serves as a
tool for collecting data. This data is crucial for evaluating the enablers, as it
provides the necessary input for emotion detection algorithms.

Moreover, an additional enabler has been developed:

● Personalization Enablers Template: serves as a template, to streamline the
creation of new enabler components and facilitate the development process.

Additionally, this document reports on the work performed towards integrating
Personalization Enablers and Beacon Applications, including:

● Personalization Integration Template creation: Unity example project showcasing
how to communicate a Unity (VR) Application with the Personalization Enablers.

● Integration of Magic XRoom with the Personalization Enablers showcase.

● Data Collection Modules: software plugin currently under development, designed
to configure and manage sensors and devices for data collection purposes.

In conclusion, the deliverable presents a set of novel enablers that can be utilized to
accelerate the development of educational XR applications. Moreover, by integrating
XR applications with the required equipment, data collection modules and emotion
recognition enablers, it paves the way for a more immersive, personalized learning
experience that is adaptable to the emotional states of the users, thereby enhancing
the overall effectiveness of the educational process.

11

D3.4 - XR2Learn enablers

1. INTRODUCTION

This deliverable provides the progress update achieved in Task 3.2, “XR2Learn
Enablers”, during Months 15-26 of the XR2Learn project. This document complements
Deliverable 3.2, submitted in Month 14 of the project. Specifically, each section of this
document first summarizes the progress reported in the first version and continues
with the new developments during the last year.

Deliverable 3.2 presented the initial versions of the six enablers developed by the
XR2Learn consortium partners in accordance with the proposal specifications.
Additionally, several other enablers were created that were not part of the initial
proposal but were developed to support XR educational applications' development,
use, integration, and data collection.

The main goals for the second sub-phase of Task 3.2 are to improve the existing
enablers and demonstrate the integration between these enablers and Beacon
Applications. This focus is also reflected in the content of this report.

Table 1 summarizes XR2Learn enablers and their status as of Month 14 of the project,
along with a brief overview of the updates achieved over the past year. Table 2 lists
the software delivered in the scope of Task 3.2, along with their GitHub repository links
and corresponding licenses.

Table 1. Enablers status: summary and progress

Enabler/tool

Progress

Until M14 M15-M26

Enabler 1. Authoring tool
Interact

Introduction of INTERACT as a generic
tool for creating physics-based VR

training scenarios. Demonstration of
the practical application of INTERACT

as an authoring tool in Beacon
Application 1 and Magic XRoom.

Implementation of new features
(hand tracking, realistic avatars,

cables), performance
optimization, and user interface

improvements. Technical
support provided for Open Call 1

projects using INTERACT.

Enabler 2: Emotion
Representation Learning
Tools

Software architecture design and
implementation, together with the

initial set of models within the
training and inference pipelines based
on research conducted for audio and

bio-measurement modalities.
Self-Supervised Learning: operates

without the need for labeled data to
pre-train Deep Learning models and
allows to train models on emotions

with less annotated data and
resources.

Supervised Learning: requires labeled
data and provides a structured

approach to identify user emotions
from input modalities.

Implementation of body-
tracking models within the

pipelines. Update of inference
tools to near real-time

processing. Enabler 3: Tools for Using
Emotion Representations

Enabler 4: Emotion
Classification Tools

Enabler 5: Multimodal
Fusion

Software architecture creation
complete. The first version of the
implementation did not include all

modalities and replicated one
modality output prediction.

Implementation of multimodal
late fusion for bio-

measurements and body
tracking modalities, as well as

integration with emotion
classification and

Personalization tools in near

12

D3.4 - XR2Learn enablers

real-time and asynchronous
communication.

Enabler 6: Personalization
Tool

The initial implementation version
included a simplified personalization

heuristic to calculate suggestions
based on automatically detected user
emotions and the challenge level of

the activity.

The current implementation
version includes a more

sophisticated personalization
heuristic, which also takes into
consideration the user level to

calculate suggestions for
personalization.

Magic XRoom Implementation of a VR application
for data collection of multimodalities

including four scenarios.

Several improvements to
usability, graphics, user

interface and data collection,
changing scenarios to increase

the likelihood of eliciting
specific engagement states, i.e.,

boredom and frustration.

Personalization Dashboard Tool to visualize the inputs and
output of Personalization Tool and

support integration.
Initial release including two versions:

version one simulates all the
components connected with the
Personalization Tool, i.e., the VR
application and the output of
Inference Tools. Version two

simulates the VR application while
connecting to and receiving output

from Inference Tools.

Release of an additional version
to support integration with VR
applications, featuring actual
integration display instead of

simulation.
Display of emotional metrics,

i.e., boredom, engagement, and
frustration percentages.

Command Line Interface Tool to streamline accessing
Personalization Enablers

functionalities.
Support for audio and bio-

measurements modality. No support
for multimodality yet.

Support for body tracking
modality and multimodality
(bio-measurement and body

tracking).
Support for Personalization
Dashboard in near real-time

settings included.

(new) Personalization
Components Template

It was in the early stage of progress. Finished and delivered to
facilitate extension and creation
of new personalization enablers

by external contributors.

(new) Personalization
Integration Template

It was not implemented. Unity application delivered to
serve as a template for

integrating beacon applications
with the Personalization

Enablers.

(new) Data Collection
Module/plugin

It was not implemented. Extraction into a standalone
component is in progress. The
virtual reality framework used
needs to be converted to the
one supported by the BA1 to

ensure full integration.

13

D3.4 - XR2Learn enablers

Table 2. List of software delivered with their GitHub repository links and
licenses

Software Repository Link Open-Source
License

Authoring Tool: INTERACT https://github.com/XR2Learn/enabler-interact Proprietary software
(closed source)

Training Tools https://github.com/XR2Learn/Personalization-
Enablers-Training-Tools

Apache 2.0

Inference Tools https://github.com/XR2Learn/Personalization-
Enablers-Inference-Tools

Apache 2.0

Personalization Tool and
Personalization Dashboard

https://github.com/XR2Learn/Personalization-
Tool

Apache 2.0

Command Line Interface https://github.com/XR2Learn/Personalization-
Enablers-CLI

Apache 2.0

Personalization Integration
Template

https://github.com/XR2Learn/Personalization-
Integration-Template

Apache 2.0

Personalization
Components Template

https://github.com/XR2Learn/Personalization-
Components-Template

Apache 2.0

Magic XRoom https://github.com/XR2Learn/magic-xroom MIT

Data Collection
Module/Plugin

To be released MIT

The remainder of the document is organized as follows: we will first report on the
progress of the Authoring Tool, followed by updates on the Personalization Enablers
and the data acquisition process. Finally, we will discuss the efforts made and the
progress achieved in integrating the Personalization Enablers with Beacon Applications.

https://github.com/XR2Learn/enabler-interact
https://github.com/XR2Learn/Personalization-Enablers-Training-Tools
https://github.com/XR2Learn/Personalization-Enablers-Training-Tools
https://github.com/XR2Learn/Personalization-Enablers-Inference-Tools
https://github.com/XR2Learn/Personalization-Enablers-Inference-Tools
https://github.com/XR2Learn/Personalization-Tool
https://github.com/XR2Learn/Personalization-Tool
https://github.com/XR2Learn/Personalization-Enablers-CLI
https://github.com/XR2Learn/Personalization-Enablers-CLI
https://github.com/XR2Learn/Personalization-Integration-Template
https://github.com/XR2Learn/Personalization-Integration-Template
https://github.com/XR2Learn/Personalization-Components-Template
https://github.com/XR2Learn/Personalization-Components-Template
https://github.com/XR2Learn/magic-xroom

14

D3.4 - XR2Learn enablers

2. AUTHORING TOOL: ENABLER 1

2.1. INTERACT: AUTHORING TOOL

2.1.1. Authoring Tool Summary up to M14

The previous version of the deliverable introduced INTERACT and its basic
functionalities, addressing the need for realistic and quick XR training scenario
development. As a Unity plugin, INTERACT enables the creation of physics-based VR
training applications, extending beyond basic functionalities to incorporate advanced
physics, ergonomic analysis, and interactive scenario design.

INTERACT reduces the technical barrier with its no-code or/and low-code, interface,
empowering users to create immersive training solutions for industries like heavy
manufacturing and energy. The practical example of integrating INTERACT in XR
scenarios was previously introduced in Beacon Application 1, a laser cutting machine
training program and later implemented in the MagicXRoom.

The previous deliverable also introduced a set of key features, including a cutting-edge
physics engine for realistic interactions, precise collision detection, and intuitive tools
for object manipulation. The scenarization module allowed for gamified and
pedagogical training experiences, while support for CAD and point cloud data ensured
flexibility. INTERACT is proprietary software distributed as a closed source, with the
official documentation available at: INTERACT documentation. Figure 1 shows a
highlight of INTERACT's key features.

Figure 1. Authoring tool key features

2.1.2. Authoring Tool Updates M15-M26

During the second sub-phase of Task 3.2, the efforts focused on enhancing the
INTERACT authoring tool by implementing new features, optimizing performance, and
improving the user interface. Additionally, technical support was provided to Open Call
1 (OC1) projects. These advancements further establish INTERACT as a versatile enabler
for the XR community.

https://light-and-shadows.com/documentation/interact/

15

D3.4 - XR2Learn enablers

2.1.2.1. Transition to OpenXR

A major update to the Authoring tool was the transition to the OpenXR standard.
SteamVR was replaced with OpenXR, providing a more future-proof and widely
supported platform for XR development.

This transition enabled the direct integration of finger-tracking technology within
headsets like the MetaQuest 3 and Vive Focus 3, enhancing the natural interaction
capabilities of INTERACT. As a result, in just a click, the user can switch from controller
interaction to natural hand tracking seamlessly. Together with the embedded physics
engine, robust hand-tracking functionality in the authoring tool allows users to interact
with virtual environments using natural gestures. This improves immersion and
usability for training and simulation scenarios. Figure 2 shows a user interacting in VR
with hand movements, demonstrating hand-tracking functionality and increased
immersive potential.

OpenXR also unlocked the support of body tracking sensors and glove sensors for
reconstructing body and hand postures in INTERACT if needed.

Figure 2. Manipulating a virtual screwdriver with MetaQuest 3 Hand tracking

2.1.2.2. Custom Avatars

Users can now create and customize realistic avatars, making simulations more
engaging and tailored to specific training needs. This was made possible by connecting
INTERACT with the API from ReadyPlayerMe. Through this integration, users can
configure realistic avatars by selecting various attributes such as gender, morphology,
skin color, and outfits. This new INTERACT feature not only enhances the realism of
simulations but also promotes inclusivity by allowing avatars to better align with
diverse scenarios and user demographics. Figure 3 displays some examples of
customized avatars.

https://www.khronos.org/openxr/
https://readyplayer.me/

16

D3.4 - XR2Learn enablers

Figure 3. Customizable avatars to the use case

2.1.2.3. Simulation Features

The unique feature provided in INTERACT, namely the physics engine, has been
improved and functionalities to better match specific industrial use cases listed below
have been added.

● Closed-loop kinematics: This feature allows for more accurate and realistic
simulation of mechanical systems with complex kinematic chains (e.g., cranes,
industrial robots, etc.)

● Cable: users can now simulate deformable bodies such as cables. The process
of creating and configuring a cable has been thought to be quick and intuitive,
either from a 3D model or from a spline shape offering designers greater
flexibility in crafting intricate cable systems. The ability to dynamically adjust
cable lengths during runtime was also introduced, allowing to simulate lifting
devices (winch)

Physics simulation upgrades: Performance and accuracy in physical interactions
were also optimized, ensuring smoother and more realistic simulations. This was
confirmed by some FSTP projects using INTERACT and witnessing better
simulation performance for their use cases.

2.1.2.4. Platform Compatibility Updates

The authoring tool is delivered as a plugin to the 3D engine Unity. Therefore, it is crucial
to regularly follow the engine updates and upgrade INTERACT accordingly. We achieved
compatibility with Unity 2022+ and Pixyz 2.0, ensuring access to the latest tools and
features for developers. In addition, significant efforts were made to keep INTERACT
aligned with the regular updates of Unity, including the transition towards Unity 6.
Investigating Unity 6 compatibility was a key priority in 2024 when Unity 6 was still
experimental. This new Unity version introduces groundbreaking features such as
enhanced AI-based tools, improved asset loading performance, and advanced graphics
rendering capabilities. These updates are critical for ensuring that INTERACT remains
at the forefront of XR development. At the time of writing this document, INTERACT is
now fully compatible with Unity 6 and PiXYZ 3.0.

17

D3.4 - XR2Learn enablers

Furthermore, initial explorations began into the feasibility of running INTERACT
simulations on native Android headsets, paving the way for broader hardware support
and increased accessibility for users. The initial results are encouraging and Android
headsets compatibility should be achieved by the end of 2025.

2.1.2.5. Usability Enhancements

In order to streamline the Authoring Process, tools and workflows were revised to
significantly reduce the time required to transition from 3D models to fully interactive
VR environments. The following achievements were performed during the second
phase:

● New user interface features, as shown in Figure 4.
○ Hierarchy icons: Enhanced visual organization, making it easier to navigate

and manage scene hierarchies.
○ Units on input fields: Added clear units of measurement to input fields,

improving clarity and reducing errors.
○ Foldable sections: Implemented collapsible UI sections to streamline the

interface and reduce visual clutter.
○ Undo history: Enhanced undo functionality to allow users to recover from

mistakes more effectively.
● An embedded object and material library was created, providing a repository of

pre-built assets for users, fostering efficiency and creativity.
● Integrated the In-Editor Tutorials (IET) package to deliver interactive tutorials

and tooltips directly within the editor, guiding users through the authoring
process step-by-step, as shown in Figure 5.

18

D3.4 - XR2Learn enablers

Figure 4. A more comprehensive and intuitive user interface

Figure 5. Using In-Editor tutorials (IET) Unity package to create interactive editor
tutorials and tooltips, helping the user to find their way within Unity’s dense

interface.

2.1.2.6. Feedback from the Community

The implementation of new features, enhancements in usability, and providing support
for OC1 projects that used INTERACT in their projects, as reported in Deliverable 3.3,
demonstrated the authoring tool’s growing maturity and capability as an enabler for
the XR community.

19

D3.4 - XR2Learn enablers

Based on feedback from the OC1 projects, several additional improvements were made
to facilitate the installation and update processes:

● A one-click installer was developed to simplify deployment.
● INTERACT became compatible with the Unity Package Manager, streamlining

integration and updates.
● The package size was reduced to facilitate easier distribution and deployment.
● Centralized package management was introduced for better organization and

control.
● A comprehensive API documentation was developed, providing detailed guidance

on INTERACT components and libraries, ensuring developers can easily integrate
and extend the tool.

20

D3.4 - XR2Learn enablers

3. PERSONALIZATION ENABLERS (ENABLERS 2-6)

3.1. SUMMARY AND UPDATES

3.1.1. Personalization Enablers Summary up to M14

3.1.1.1. Preliminary Research

The previous deliverable explored methodologies for Emotion Recognition (ER) in XR,
focusing on modalities beyond facial expressions, such as speech, bio-measurements,
and body-tracking. Specifically, the following aspects were elaborated on:

● AI models. Suitable Machine and Deep Learning architectures were identified
and evaluated. Besides, various feature extraction techniques and Self-
Supervised Learning methods were exploited to address ER using speech, bio-
measurements, and body-tracking.

● Open-source data. Open-source datasets for training and fine-tuning models
were assessed, taking into consideration licenses, the effectiveness of emotion
elicitation protocols, and dataset compatibility with XR-based use cases.

● Challenges in XR. Based on our analysis, we outlined challenging aspects, such
as capturing diverse modalities in XR environments, managing computational
demands, and collecting annotations for affective states like the Theory of
Flow1.

The preliminary results of this research were presented at a workshop at the 25th
International Conference on Mobile Human-Computer Interaction (2023).

3.1.1.2. System Design and Initial Version

Based on the conducted research and careful design of the system, the initial
architecture separated six enablers into four standalone modules or tools, as shown
in Figure 6. Each of the tools was delivered as a repository in the XR2Learn’s project
GitHub repository.

1 Nakamura, Jeanne, and Mihaly Csikszentmihalyi. "The concept of flow." Handbook of positive
psychology 89 (2002): 105.

21

D3.4 - XR2Learn enablers

Figure 6. A high-level overview of the personalization enablers in M14.

In M14, the project delivered the initial versions of the Personalization Enablers. The
enablers version at M14 is summarized in Figure 7, according to the supported
modalities. The green icon indicates completed implementation, the yellow icon
indicates implementation in progress, and the red icon indicates implementation that
has yet to start (in M14).

Figure 7. Progress in integrating modalities with the personalization enablers’
components in M14.

Furthermore, by M14, we identified several improvement points for the Personalization
Enablers to be prioritized in the second sub-phase of Task 3.2. Specifically, these
include:

● Body-tracking modality in progress. As of M14, the body tracking modality was
not fully integrated into the Personalization Enablers. While the AI models were
researched and implemented, the training and inference pipelines were still not
connected. As a result, the multimodal fusion component of the inference tools
did not support the combination of body tracking and bio-measurements.

● Inference tools only supported recorded session data. As an initial step towards
implementing near real-time inference functionality—essential for personalizing
VR educational scenarios—the inference tool was firstly designed to support
only recorded data, rather than processing data from real-time streams.

22

D3.4 - XR2Learn enablers

● Showcasing integration. While the personalization enablers are a set of fully
standalone tools, it is important to provide a template application showcasing
integration with VR applications using network protocols, to support integration
with the Beacon Application(s), open-call project and third-party applications.

3.1.2. Personalization Enablers Update M15-M26

3.1.2.1. Improvements and Integration

During the last year (M15-M26), the emphasis in Personalization Enablers development
has been placed on addressing the prioritized points outlined in the previous section
and building a foundation for integrating Personalization Enablers with Beacon
Applications. The progress achieved, which will be detailed in the following sections, is
summarized below. Figure 8 illustrates the current status of the Personalization
Enablers in relation to their modalities. An updated diagram of the Personalization
Enablers is presented in Figure 9, reflecting the improvements listed below.

● Personalization Enablers improvements:
○ Body-tracking modality. As of M26, the body-tracking modality is fully

integrated into the pipelines of Personalization Enablers, completing KPI
2.3 of the project.

○ Near real-time inference. Currently, inference tools support near real-
time data processing, which facilitates the exploitation of enablers during
education scenarios.

○ Multimodal Fusion. Currently, this component combines the prediction of
two modalities (bio-measurements and body tracking) in a decision-level
approach.

○ More sophisticated personalization heuristics. The personalization
heuristics have been updated and now include the user skill level, in
addition to automatically detected user engagement and the activity
challenge level, to calculate personalized suggestions.

○ Pre-build docker images made available. This effort aims to streamline
the use of Personalization Enablers and promote Open Science principles,
particularly reproducibility.

○ Creation of new enablers. The Personalization Enabler Template was
developed to streamline the process of creating and integrating new
enablers with the current software system.

● Foundations for integration of Personalization Enablers and Beacon
applications. New tools and developments have been created to showcase the
communication between different software systems over the network:

○ The personalization integration template has been developed.
○ A demonstration of integrating Magic XRoom with Personalization

Enablers in near real-time has been performed.
○ Data collection module extraction from Magic XRoom is in progress.

23

D3.4 - XR2Learn enablers

Figure 8. Progress in integrating modalities with the Personalization Enablers’
components in M26.

Figure 9. A high-level overview of the Personalization Enablers in M26, with body
tracking fully integrated, evaluation component eliminated from Inference Tools,

which now implements a near real-time inference. The Personalization Dashboard is
included in the diagram.

The following sections of this chapter provide a more detailed description of new
functionalities and updates within each tool of the Personalization Enablers.

3.2. TRAINING TOOLS (ENABLERS 2-4)

3.2.1. Training Tools Summary up to M14

By M14 of the project, the partners focused on the development of the Training Tools,
consisting of five key components: Pre-processing, Handcrafted Features Extraction,
Self-Supervised Learning (SSL) Training, SSL Features Extraction, and Supervised
Learning Training. These components align with Enablers 2, 3, and 4, providing a
modularized and flexible framework for pre-training and fine-tuning models as part of
the Personalization Enablers.

24

D3.4 - XR2Learn enablers

The architecture is designed to isolate components and dependencies and enable the
independent deployment of each modality, such as audio and bio-measurements.
During the first 14 months, models for two modalities, audio and bio-measurements,
were integrated into the Training Tools pipelines. The workflow begins with the Pre-
processing module, which organizes raw data into structured time windows with
corresponding labels. The Handcrafted Features Extraction component provides an
alternative to Deep Learning-based feature extraction. These features or raw data can
be utilized for SSL pre-training or as input for supervised learning tasks. The SSL
Training module focuses on unsupervised pre-training of encoders (Enabler 2), enabling
the generation of robust feature representations. The Features Extraction module
leverages trained encoders to produce embeddings (Enabler 3), while the Supervised
Learning Training module fine-tunes these models or trains the model from scratch
using labeled data (Enabler 4).

Each component operates independently while being integrated with others within the
pipeline. Subsequent training and inference components can seamlessly use the
outputs of the components. The audio modality was implemented using the open-
source RAVDESS data format, and the bio-measurements modality was implemented
using the data format of the XR2Learn data collection tool, Magic XRoom.

3.2.2. Training Tools Updates M15-M26

Within M15-26 of the project, the following major contributions have been made to the
Training Tools pipeline:

- Body-tracking modality. The body-tracking analysis is supported in the latest
versions of the tools. Specifically, functionalities such as pre-processing, hand-
crafted feature extraction and supervised training can be applied to body-
tracking data collected using the Magic XRoom data format. The pre-processing
component segments input time series into shorter time windows, with the
length configurable via a configuration file. The supervised component contains
a training pipeline for a model, namely a Convolutional Neural Network, trained
on the segments obtained to predict users’ engagement, according to the theory
of flow labels.

- Discretizing continuous values. Starting from version 1.3 of Magic XRoom, users
provide feedback on a continuous scale (see Figure 19). The pre-processing
pipelines have been adjusted to discretize these values into the provided
categories, where the threshold values for each category can be set through a
configuration file. Later, it might also be interesting to allow users to fit
regression models (using the same encoders but different output layers for the
neural network) in order to train models to predict the continuous values of
engagement.

- Pre-built Docker containers. To make the Training Tools components easier to
use, all Docker containers have been pre-built and hosted on GitHub. As a result,
users do not need to build the Docker containers themselves. Instead, they can
simply pull the images, which is faster and reduces the likelihood of bugs or
errors. Training Tools encompassed a total of 14 docker images2 at the time of
writing this document.

- The documentation has been expanded to include some previously uncovered
sections, as well as the new changes that have been made.

2 https://github.com/orgs/XR2Learn/packages?repo_name=Personalization-Enablers-Training-
Tools

https://github.com/orgs/XR2Learn/packages?repo_name=Personalization-Enablers-Training-Tools
https://github.com/orgs/XR2Learn/packages?repo_name=Personalization-Enablers-Training-Tools

25

D3.4 - XR2Learn enablers

Table 3 lists the versions released of Training Tools during M15-M26. The full list of
corresponding changes can be accessed in the Training Tools changelog via the
following link:

https://github.com/XR2Learn/Personalization-Enablers-Training-
Tools/blob/master/CHANGELOG.md

Table 3. Training tools released versions and dates.

Version Release Date

v0.4.0 2024-03-12

v0.5.0 2024-04-09

v0.6.0 2024-07-30

v0.6.1 2024-08-20

v1.0.0 2024-10-25

v1.1.0 2025-01-13

v1.2.0 2025-01-21

All the released versions can be accessed and downloaded at:
https://github.com/XR2Learn/Personalization-Enablers-Training-Tools/releases

3.3. INFERENCE TOOLS (ENABLER 5)

3.3.1. Inference Tools Summary up to M14

The initial prototype of Inference Tools was designed to support unimodal and
multimodal emotion classification. The toolbox consists of emotion classification,
multimodal fusion, and evaluation, delivered as modularized and standalone
components via Docker. The first version of the deliverable introduced these
components and provided minimal technical documentation for their usage.

Up to M14, the emotion classification component could operate with two individual
modalities, namely audio and bio-measurements, to predict emotions using models
trained within Training Tools. These modalities were implemented into separated
components, the emotion classification component for audio modality was developed
using the data format of an open-source dataset called RAVDESS, while the emotion
classification component for bio-measurements modality was developed using the
data format of Magic XRoom.

The initially released multimodal fusion component provided a non-real-time pipeline
for combining the outputs from individual modalities using a decision-level fusion
schema for a series of predictions, implemented as majority voting at the class
probability level. Because only one modality using Magic XRoom data format had been
fully implemented at this point, i.e., bio-measurements, in practice, the multimodal
fusion component was simply reproducing the output of this modality, calculated by
the emotion classification component.

The Evaluation component assessed the performance of these emotion detection
systems, providing metrics like accuracy, recall, and precision.

https://github.com/XR2Learn/Personalization-Enablers-Training-Tools/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Personalization-Enablers-Training-Tools/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Personalization-Enablers-Training-Tools/releases

26

D3.4 - XR2Learn enablers

These components were designed to operate independently or as part of an integrated
pipeline, exploiting the outputs from the Training Tools components, e.g. trained
models and pre-processed data. The system supported flexible configurations,
enabling users to run components locally or via Docker. Additionally, the fusion tool
supported a publisher-subscriber messaging protocol to pass model predictions to
personalization modules over a network.

3.3.2. Inference Tools Updates M15-M26

Within M15-26 of the project, the following major contributions have been made to the
Training Tools pipeline, and Figure 10 shows the updated Inference Tools components:

- Body-tracking modality. First, during M15-26, the body-tracking modality has
been integrated into all components of inference tools. As a result, the body-
tracking models trained within Training Tools can be used in inference.

- Near real-time pre-processing. An important contribution in M15-26 is a novel
pre-processing component within Inference Tools that allows near real-time
processing of data being written by VR applications. Specifically, this component
reads sensory data from logs, applies required pre-processing and publishes
pre-processed data via Pub/Sub. The current version of the component supports
the data format recorded by Magic XRoom. The technical details regarding this
component are presented in Section 3.3.2.1.

- The evaluation component was removed. After analyzing the possible use cases,
the evaluation component was removed from the inference tools in version 1.0.0
due to its redundancy. Specifically, the components in inference tools are used
to provide predictions close to real-time for data streaming from a VR
application. In turn, model evaluation is normally conducted during model
training at the experimentation stage within the supervised training component
from Training Tools.

- Multimodal Fusion. The multimodal fusion pipeline has been significantly
upgraded to support a near real-time inference pipeline. Specifically, the
predictions from different modalities are accumulated before being fed to the
multimodal fusion logic. This pipeline is elaborated on in Section 3.3.2.2.

- Extending publisher-subscriber protocol. In the latest version of Inference
Tools, all components can communicate with each other using the Pub/Sub
protocol. Specifically, the components publish and/or subscribe to topics
dedicated to different pipeline parts, from pre-processed data to final
predictions fused across modalities.

- Pre-built Docker containers. All Docker containers have been pre-built and
hosted on GitHub to facilitate using the Inference Tools components. As a result,
users do not need to build the Docker containers themselves. Instead, they can
simply pull the images, which is faster and reduces the likelihood of bugs or
errors. Training Tools encompass a total of 7 docker images3 at the time of
writing this document.

- The documentation has been expanded to include some previously uncovered
sections, as well as the new changes that have been made.

3 https://github.com/orgs/XR2Learn/packages?repo_name=Personalization-Enablers-
Inference-Tools

https://github.com/orgs/XR2Learn/packages?repo_name=Personalization-Enablers-Inference-Tools
https://github.com/orgs/XR2Learn/packages?repo_name=Personalization-Enablers-Inference-Tools

27

D3.4 - XR2Learn enablers

Figure 10. Inference Tools components state in M14 (top) and Inference Tools
components state in M26 (bottom). Before, the communication between

components was performed by writing and reading stored files with data. Currently,
all components exchange messages in near real-time using the Pub/Sub protocol
for asynchronous communication. Also, the current Inference Tools version has its

Preprocessing component, which allows near real-time inference latency.

Table 4 lists the versions released during M15-M26, and the full list of corresponding
changes for each version can be accessed in the Inference Tools changelog via the
following link:

https://github.com/XR2Learn/Personalization-Enablers-Inference-
Tools/blob/master/CHANGELOG.md

https://github.com/XR2Learn/Personalization-Enablers-Inference-Tools/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Personalization-Enablers-Inference-Tools/blob/master/CHANGELOG.md

28

D3.4 - XR2Learn enablers

Table 4. Inference tools released versions and dates.

Version Release Date

v0.4.0 2024-03 -12

v0.5.0 2024-04-09

v0.6.0 2024-07-24

v1.0.0 2024-10-25

All the released versions can be accessed and downloaded at:
https://github.com/XR2Learn/Personalization-Enablers-Inference-Tools/releases

3.3.2.1. Inference Data Processing Component

Description

A new component in the Inference Tools was created to support the near real-time
processing of user data into automatic classification of user engagement levels
according to the theory of flow, i.e., boredom, engagement and anxiety.

This component reads the user data that was collected from the VR device and sensors
and written into CSV files, pre-processes the files into time windows data according
to the frequency of the data modality, and publishes each time window data to be
further processed by the other Inference tool components, i.e., Emotion Detection and
Fusion Layer components. This component runs in low latency, i.e., near real-time. This
component is deployed per modality, i.e., each modality has its own Inference
Preprocessing component.

The Inference Data Processing Component behaves similarly to the Preprocessing
component from Training Tools (Section 3.2). Both of them read raw data from different
modalities and process it into a format to be used by the following components in the
systems pipeline. They differ in how they make available their output. While
Preprocessing from Training Tools saves the output into files that will be used for pre-
training and fine-tuning ML models, the Inference Preprocessing sends the processed
data as a message using the Pub/Sub protocol so as to allow the asynchronous and
near real-time latency of this communication, a requirement for the Inference
components.

Prerequisites

- Docker4 installed

- Python 3.105 installed

Installation

Note: This component must be installed on the same machine as the one running the
VR application that records the user’s data, as the Inference Preprocessing reads the
local files generated by the Unity VR application. For example, if this component is

4 https://docs.docker.com/engine/install/
5 https://www.python.org/downloads/

https://github.com/XR2Learn/Personalization-Enablers-Inference-Tools/releases
https://docs.docker.com/engine/install/
https://www.python.org/downloads/

29

D3.4 - XR2Learn enablers

running with Magic XRoom, this component needs to be installed on the same
computer as Magic XRoom is running.

1. Download the code at the GitHub repository (See Table 2)

Basic User Manual

1. Navigate to the folder:

 “Inference_Data_Processing -> Inference_Data_Processing_<MODALITY>_Modality”,
changing <MODALITY> for the modality name, for example, use BM for the bio-
measurements modality.

2. Edit the “configuration.json” file to set up the location to read the raw data
under the “<MODALITY> -> inference_config -> data_processing ->

monitor_directory” key. Changing <MODALITY> for the used modality name, e.g.,
“body_tracking” for the body tracking modality.

3. Run the docker container by running the command (which will pull the docker
image and start the Inference Preprocessing docker service for a given modality):

a. docker compose up

3.3.2.2. Multimodal Fusion Component

As outlined in Section 3.3.1, in the initial version of Deliverable 3.2, the Multimodal
Fusion component was still in its early stages. The architecture had been established
and connected to the other Inference Tools components, but its functionality was
incomplete. It did not support multiple modalities and simply repeated the predictions
received from the emotion classification component, acting as a wrapper for posterior
developments.

The Multimodal Fusion component now combines multiple modalities for engagement
predictions into a single multimodal prediction using Decision Level Fusion, also known
as Late Fusion. In this approach, each modality has its own emotion classification
model that predicts an engagement-related state. The final Multimodal Fusion
prediction is generated after considering the predictions from each individual modality,
as can be observed in Figure 10, which depicts the updated diagram of Inference Tools
components. By default, the current version of Multimodal Components is set to work
with modalities and the data format available in Magic XRoom (Section 4.1), including
bio-measurements and body-tracking modalities.

One of the main challenges in multimodal prediction fusion is the temporal
synchronization of the data. Different modalities often generate data at varying
frequencies, and their machine-learning classifier pipelines produce predictions using
specific temporal window sizes based on the nature of each modality. For the Magic
XRoom data format, the bio-measurement modality generates data in a 5-second time
window after preprocessing, while the body tracking modality produces data every
second. As a result, the combined prediction must be generated every 5 seconds to
ensure that the fusion component has at least one prediction from each modality
during that time window.

The Multimodal Fusion component monitors each modality channel for new messages
containing emotion predictions sent asynchronously by the emotion classification
components. As a result, the Multimodal Fusion component is then responsible for
organizing those messages in a temporal manner to create compatible time windows,
allowing this component to combine the predictions into a multimodal output
prediction.

When creating the fusion for bio-measurements and body tracking from Magic XRoom
data format, the Multimodal Fusion Component creates and manages a buffer to store

30

D3.4 - XR2Learn enablers

the messages from both modalities until compatible time windows are completed. This
generally means storing five messages from body tracking while waiting for one
message from bio-measurements to execute the fusion. This number of messages
stored in the buffer might differ if any delays in receiving messages from emotion
classification occur. In summary, the Multimodal Fusion Component receives messages
from unimodal classification models and keeps them until it is possible to execute a
multimodal fusion based on the frequency of each modality data generation.

Figure 11 shows the fusion process for the modalities of bio-measurement and body-
tracking. For each time window, the bio-measurement modality produces a single
prediction vector of dimension three (representing the probability of each class), while
the body-tracking modality generates five prediction vectors (one per time slot), each
also of dimension threeFirstly, for a given time window, we need to represent the body-
tracking modality with one prediction vector; for this, we use a majority vote heuristic,
selecting the first prediction vector for the most present class.

After obtaining one prediction vector per modality for each time window, the two
modalities are combined by performing a vector average operation with the prediction
vectors from each modality.

Figure 11. Multimodal Fusion for bio-measurement and body tracking modalities
(selection of modalities is based on the two modalities from the Magic XRoom data

format fully integrated into the Personalization Enablers).

It is important to highlight that the output of the Inference Tools reflects the user's
engagement state, which can be engagement, boredom or anxiety. The Personalization
Tool utilizes real-time engagement data to calculate suggestions for adjusting
educational content when the user is not engaged, specifically when experiencing
boredom or anxiety. No further emotional analysis is performed, and no emotional data
is stored. Furthermore, the data used and generated by the Inference Tools is non-
identifiable. Additionally, the Personalization Tool does not use single emotional states
but aggregates a user's engagement states throughout a specific educational VR

31

D3.4 - XR2Learn enablers

activity. All of these elements were designed to ensure users' privacy and consider
current EU AI Act discussions6.

3.4. PERSONALIZATION TOOL (ENABLER 6)

3.4.1. Personalization Tool Summary up to M14

Personalization Tool was designed to enhance educational XR applications by providing
personalized activity-level recommendations. This tool integrates user engagement
predictions from the Inference components with contextual data from VR applications,
particularly activity difficulty, to dynamically adjust the difficulty of learning materials.
By leveraging real-time data on user emotions and contextual information, the tool
makes recommendations that allow delivering educational content at a level optimal
for effective and engaging learning.

The tool was implemented to utilize the Pub/Sub messaging protocol to communicate
with Inference Tools and VR applications. Besides, the component was integrated with
the Personalization Dashboard (Section 3.5.1), which was used to visualize the outputs
of inference and personalization components.

3.4.2. Personalization Tool Updates M15-M26

The major update to the Personalization Tool involved enhancing the personalization
heuristic. In the previous version, the calculation was based on the user's emotions,
which are automatically identified by Inference Tools, and the difficulty level of
activities, as determined by a VR application. With this update, a new metric has been
added: the user's skill level. This addition completes KPI 2.4, as outlined in the project’s
proposal agreement document.

The emotion representation model utilized, i.e., the emotions considered and the
personalized suggestions to the educational scenarios, is based on the Theory of Flow
(Figure 12), which maps activity levels (challenges) and user skill levels (action
capability) into three emotional/mental states: anxiety, flow and boredom. According
to the Theory of Flow, properly adjusting the difficulty level of an activity to match the
user's skill can promote and/or maintain a state of flow or engagement. The Theory of
Flow has been frequently used in adaptive learning7 and gaming challenge adaptation8.

6 https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng, https://artificialintelligenceact.eu/ai-act-
explorer/
7 Basawapatna, Ashok & Repenning, Alexander & Koh, Kyu Han & Nickerson, Hilarie. (2013). The
Zones of Proximal flow: Guiding students through a space of computational thinking skills and
challenges. ICER 2013 - Proceedings of the 2013 ACM Conference on International Computing
Education Research. 67-74. 10.1145/2493394.2493404.
8 Chanel, Guillaume & Rebetez, Cyril & Bétrancourt, Mireille & Pun, Thierry. (2008). Boredom,
Engagement and Anxiety as Indicators for Adaptation to Difficulty in Games. 13-17.
10.1145/1457199.1457203.

https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
https://artificialintelligenceact.eu/ai-act-explorer/
https://artificialintelligenceact.eu/ai-act-explorer/

32

D3.4 - XR2Learn enablers

Figure 12. Theory of Flow9

The Personalization Tool then has three inputs: the current activity level (e.g., low,
medium, hard), the user skill level (e.g., beginner, intermediate, advanced), and the
automatically identified user engagement state (e.g., anxiety, engagement, and
boredom). Figure 13 shows an overview of the Personalization Tool's inputs and
outputs.

Utilizing these three inputs, the Personalization Tool calculates and suggests the next
activity level, which could remain the same, increase or decrease the challenge level.

Since the Personalization Tool aims to foster or maintain the engagement (flow state),
if it receives the information that the user's emotional state is engaged, the
personalized suggestion is that the activity level should remain the same as before
because the user is already in the target engagement state.

Figure 13. Personalization Tool overview: inputs and output

9 Nakamura, Jeanne, and Mihaly Csikszentmihalyi. "The concept of flow." Handbook of positive
psychology 89 (2002): 105.

33

D3.4 - XR2Learn enablers

However, if the Personalization Tool receives information that the user is in an anxiety
or boredom state, it will suggest a change in the activity level to bring the user back
to engagement.

The personalized suggestion is made two-fold: first, considering the engagement state,
and second, the user level. The emotional state will dictate if the activity level will
decrease or increase. For instance, if the emotion is anxiety, the activity level should
decrease, whereas if the emotion is boredom, the activity level should increase. The
user level then dictates how much the activity level should increase or decrease. For
example, suppose a beginner user is anxious while doing a hard activity. In that case,
the Personalization Tool will suggest the activity level be changed to an easy level, not
to a medium level, since the user is a beginner.

Additionally, the current version of the Personalization Tool has an updated message
format. The new format now includes the final user's engagement level, reflecting their
emotional response during the activity and the percentage of engagement states
experienced by the user throughout the learning activity. This change was implemented
to provide VR applications with more relevant information, allowing them to integrate
personalized suggestions tailored to the activity.

Figure 14 represents the current message Personalization Tools generates.

Figure 14. Message format the Personalization tool generates, including emotion
information and suggestion of the next activity level.

Lastly, to make the use of the Personalization tool easier, all pre-built Docker images
are hosted on GitHub. This means users do not need to build the Docker containers
themselves; they can simply pull the images. This approach is faster and reduces the
likelihood of bugs or errors. Two Docker images10 are included in the Personalization
Tool at the time of this writing.

Table 5 lists the versions released during M15-M26, and the full list of corresponding
changes for each version can be accessed in the Personalization Tool changelog via the
following link:

https://github.com/XR2Learn/Personalization-Tool/blob/master/CHANGELOG.md

10 https://github.com/orgs/XR2Learn/packages?repo_name=Enabler-6-Personalisation-Tool

https://github.com/XR2Learn/Personalization-Tool/blob/master/CHANGELOG.md

34

D3.4 - XR2Learn enablers

Table 5. Personalization Tool released versions and dates.

Version Release Date

v0.2.2 2024-03-12

v0.2.3 2024-07-25

v1.0.0 2024-10-28

All the released versions can be accessed and downloaded at:
https://github.com/XR2Learn/Personalization-Tool/releases

3.5. ADDITIONAL ENABLERS

3.5.1. Personalization Dashboard

Personalization Dashboard is a web-based graphic interface for users to visualize the
communication between the Personalization Enablers (i.e., Inference Tools and
Personalization Tool outputs) and a VR application. This enabler, not included in the
initial plan, can also simulate parts of the system that have not yet been integrated
with the Personalization Tool, making it a valuable debugging resource.

Initially, the Personalization Dashboard had two versions: the first version (v1), the
Inference Tools and VR (Unity) application outputs were simulated. This version (v1)
helps visualize the Personalization Tool output and test its personalisation heuristic in
a streamlined manner without needing additional integration. Utilizing this version
facilitates the process of testing and experimenting with the Personalization Tool in a
controlled and modularized manner.

In Version 2 (v2), the Personalization Dashboard displays the Personalization Tool and
Inference Tools' real outputs and only simulates the VR application outputs. This
showcases the integration of Personalization Enablers inner components without
needing to integrate with a Unity VR application. Utilizing this version facilitates the
process of testing and experimenting with the integration of Personalization Enablers
and communication of components, such as Inference Preprocessing, emotion
classification, and Multimodal Fusion components.

During M15-M26, we included an additional Personalization Dashboard version. In
Version 3 (v3), no component is simulated anymore, and the Personalization Dashboard
serves as a graphic display of the messages exchanged by Inference, Personalization
Tool, and a VR application. Utilizing this version facilitates testing and visualizing a full
integration of Personalization Enablers with VR Unity applications.

Figure 15 displays screenshots of the Personalization Dashboard, including its three
versions.

https://github.com/XR2Learn/Personalization-Tool/releases

35

D3.4 - XR2Learn enablers

Figure 15. Screenshots displaying Personalization Dashboard Version 1 (top), Version 2
(middle) and Version 3 (bottom).

3.5.2. Command Line Interface (CLI)

The Command Line Interface (CLI), described in detail in Deliverable D3.2 XR2learn
enablers (M14), Section 3.5, is an additional enabler created to streamline
Personalization Enablers’ functionalities. Designed with a higher level of abstraction to
facilitate the use of Personalization Enablers, CLI includes simplified commands, a
single configuration file, and pre-setup scripts and configurations for some of the most
common use cases.

36

D3.4 - XR2Learn enablers

CLI received updates to support the body tracking modality implementation, near real-
time inference tools, and multimodal fusion capability. Utilizing CLI, users can access
any Personalization Enabler separately or run end-to-end training, inference and/or
personalization pipelines. With the new release, CLI commands have been updated;
the prerequisites and installation instructions remain the same, as reported in
Deliverable D3.2 version 1 (M14). The following subsection presents the updated basic
user manual for the Command Line Interface (CLI).

Basic User Manual

To access the Personalization Enablers' functionalities through CLI, two elements are
needed:

1. CLI commands and options
2. A configuration.json file (a personalized JSON configuration file path as an

option to the CLI command can be provided; if no JSON configuration file path
is provided, the default file ./configuration.json is used - available in the relevant
repository).

The general command format to use Personalization-CLI is:

python xr2learn_enablers_cli/xr2learn_enablers.py [OPTIONS] [COMMAND] [OPTIONS]

For help with the options and commands, access a list of arguments and their
description with:

python xr2learn_enablers_cli/xr2learn_enablers.py --help

Command list:

Training (for any supported modality, i.e., audio, bm, body-tracking):

- Audio (RAVDESS data format)

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model train --dataset ravdess --features_type ssl --
ssl_pre_train encoder_fe --ed_training true

- Bio-measurements (Magic XRoom data format)

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model train --dataset Xroom --modality bm --features_type ssl
--ssl_pre_train encoder_fe --ed_training true

- Body Tracking (Magic XRoom data format)34

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model train --dataset Xroom --modality body-tracking --
features_type none --ssl_pre_train none --ed_training true

Inference (Predict Audio modality with files reading/writing, not Pub/sub protocol):

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model predict --dataset ravdess

Inference (near real-time with Pub/Sub Protocol):

37

D3.4 - XR2Learn enablers

Bio-measurement and body tracking uni modality

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model run-dashboard --modality bm

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model run-dashboard --modality body-tracking

Bio-measurement and body tracking multimodality (multimodal fusion)

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
development-model run-dashboard --modality bm --modality body-tracking

Go to the URL http://127.0.0.1:8080 to access the Personalization
Dashboard

The commands above for inference near real-time will run the Personalization
Dashboard by default, and the result of the near real-time prediction for unimodal or
multimodal prediction can be visualized in the Dashboard.

Note: To run Dashboard for one modality or multiple modalities, the command and the
configuration must match, i.e., if the dashboard command is run with one modality,
the `configuration.json` file must reflect the same modality.

Stop Personalization Dashboard (and all the Personalization Enablers services running)

python xr2learn_enablers_cli/xr2learn_enablers.py stop-dashboard

Available versions

Table 6 lists the versions released during M15-M26, and the full list of corresponding
changes for each version can be accessed in the Command Line Interface changelog
via the following link:

https://github.com/XR2Learn/Personalization-Enablers-
CLI/blob/master/CHANGELOG.md

Table 6. Command Line Interface released versions and dates.

Version Release Date

v0.5.0 2024-03-12

v0.5.1 2024-04-10

v0.6.0 2024-07-25

v1.0.0 2024-10-28

All the released versions can be accessed and downloaded at:
https://github.com/XR2Learn/Personalization-Enablers-CLI/releases

3.5.3. Personalization Enablers Template

Description

Personalization Enablers consist of multiple components working together. This
intricate architecture can present challenges for developers when they are tasked with
creating new enablers. To facilitate the implementation of new enablers by the

http://127.0.0.1:8080/
https://github.com/XR2Learn/Personalization-Enablers-CLI/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Personalization-Enablers-CLI/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Personalization-Enablers-CLI/releases

38

D3.4 - XR2Learn enablers

community, an additional enabler that serves as a template has been developed. This
template makes the creation of new enabler components much easier, facilitating the
development process and boosting the adoption of the XR2Learn solution.

The Personalization Enablers Template is available as an open-source project on
GitHub. Developers can use a single command to create a placeholder skeleton for a
new enabler, already pre-configured to communicate with the other Personalization
Enablers. This setup includes files and folder structure, Docker configuration, unit
tests, versioning, and documentation.

By utilizing the Personalization Components Template, developers can generate the
entire structure of a new enabler with just one command. They will only need to modify
the code file to implement the desired functionality for the new enabler, significantly
reducing the effort required on the software architecture side.

Prerequisite and Installation

This component uses the cookiecutter Python library11. To install this library, run the
following command:

 pip install --user cookiecutter

There is no further installation required.

Basic User Manual

1. Run the command
a. cookiecutter git@github.com:XR2Learn/Personalization-Components-

Template.git

2. Answer the prompt questions:
a. "project_name": Name of the Component, following the format: "SSL Features

Extraction BM Modality",
b. "description": Description of the component,
c. "project_slug": e.g., "ssl_features_extraction_bm_modality",
d. "component_folder": e.g., "SSL_Features_Extraction_BM_Modality",
e. "parent_component": Parent Component Name, e.g., "Pre_precessing",
f. "main_python_file": Python entry-point script name without .py format,

e.g., generate_features.py
g. "service_name": e.g., "ssl-features-generation-bm",
h. "current_version": Repository current version in the format: "0.1.0"

3.6. RESEARCH PUBLICATIONS

While the research phase preceding the development of Emotion Recognition enablers
was finalized in M14, as described in Deliverable 3.2 XR2Learn enablers, Section 3.1, the
outcomes of the conducted research led to the following scientific publication:

- Khaertdinov, B., Jeruis, P., Sousa, A., Hortal, E. (2024) Exploring Self-Supervised
Multi-view Contrastive Learning for Speech Emotion Recognition with Limited
Annotations. Proc. Interspeech 2024, 4708-4712, doi: 10.21437/Interspeech.2024-
860

11 https://cookiecutter.readthedocs.io/en/latest/installation.html

39

D3.4 - XR2Learn enablers

4. DATA ACQUISITION

4.1. MAGIC XROOM: DATA COLLECTION TOOL

4.1.1. Magic XRoom Summary up to M14

Magic XRoom is a virtual reality application developed to collect multimodal sensor
data while eliciting specific emotional responses. Figure 16 shows an overview of the
Magic XRoom virtual room. The application allows users to play games that are
designed to elicit emotions based on the Theory of Flow, namely engagement,
frustration, or boredom. Magic XRoom also asks users to provide feedback describing
their affective response according to the mentioned categories. This feature allows
further processing of collected data annotated based on the users’ responses. Magic
XRoom contains the four following games with varying difficulty levels:

● Stacking Cubes. The user is asked to stack four cubes within a time limit while
facing certain challenges. Failed levels must be repeated until successful (Figure
17).

● Color Words. The user selects a cube based on the color name shown on the
screen, ignoring the font's color. The game gets harder as more cubes appear
and the time for actions decreases. The game ends upon selecting the wrong
cube or running out of time.

● Canvas Painting. The user must draw specific shapes within a defined area while
avoiding mistakes in a limited amount of time. A limited number of errors are
allowed.

● Tower of Hanoi. The user matches a target configuration of disks using an
interactive set of rods and disks. The rods have different size capacities (3, 2,
and 1 disks, from left to right). Moves are limited, and the task must be
completed within a time constraint (Figure 18).

Figure 16. Screenshot displaying Magic XRoom’s virtual room with the four interactive
scenarios.

40

D3.4 - XR2Learn enablers

Figure 17. View of the stacking cubes scenario

Figure 18. Detailed view of the Tower of Hanoi scenario and the interactive handle
used to adjust the desk height

Magic XRoom collects VR headsets’ and VR controllers’ data, capturing positional and
rotational information. It also supports integration with external sensors, namely
Shimmer 3 GSR+, and devices for eye and mouth tracking. Therefore, it is possible to
acquire physiological and behavioral signals, such as galvanic skin response (GSR),
heart rate, pulse wave, and eye/lip movement features. All data is synchronized and
exported in CSV format, with adjustable parameters like sampling frequency and buffer
sizes that can be provided in the configuration file. A detailed summary of the
configuration file structure is available in the first version of the deliverable and the
GitHub repository of the tool: https://github.com/XR2Learn/magic-xroom

4.1.2. Magic XRoom Updates M15-M26

https://github.com/XR2Learn/magic-xroom

41

D3.4 - XR2Learn enablers

The Magic XRoom was deployed and tested during the initial data collection phase
(M10-M13). This process identified a series of issues and gathered valuable user
feedback, which guided the subsequent implementation of fixes and enhancements.

The primary challenge following the first data collection was to enhance the
application's immersiveness. To address this, several assets and props were added to
create an environment that struck a balance between being engaging and welcoming,
ensuring it supported users without disrupting their tasks.

However, adding these assets and props introduced an additional challenge related to
maintaining the environment's quality. It became evident that several changes were
necessary, including adjustments to lighting, reflections, materials, textures,
surroundings, additional props, and shadows. These modifications not only improved
the visual fidelity but also required updates to user interactions within the VR
environment to ensure a seamless experience.

Moreover, the fact that the Magic XRoom is a VR application added another layer of
complexity. The introduction and placement of these elements had to be carefully
planned to accommodate users of varying heights and levels of experience, ensuring
accessibility and usability for a diverse audience.

● Version 1.1 of the Magic XRoom included a revamped environment and changes
to the overall feel of the scenarios. Textures and lights were adjusted to improve
realism, and several quality-of-life changes were added to the user interactions.

● Version 1.2 experienced a restructuring of the user interface, including a shared
and improved theme, updated animations, improvement to the feedback
mechanics (Figure 19), and, last but not least, a better introduction to each
scenario.

● Version 1.3 was released just before the beginning of the second data collection
(M23 - M24) and included bug fixes and adjustments to the output data
collected following internal tests and feedback from UM.

Figure 19. Detail of the updated user interface showing the feedback panel, which
includes a (continuous) slider instead of 3 (discrete) buttons, easing the selection

of the user emotion.

In addition to the changes mentioned above, a refactoring of the overall codebase was
undertaken to improve the quality of the project hosted on our GitHub repository. A
clear separation between support libraries/frameworks and the data collection tool

42

D3.4 - XR2Learn enablers

code provides an easier approach to understanding the application's inner workings.
This process is part of a continuous effort to maintain a high standard of code quality
and will extend to future updates as the project evolves.

Table 7 lists the versions released during M15-M26.

Table 7. Magic XRoom released versions and dates.

Version Release Date

v1.1.0 2024-06-27

v1.2.0 2024-09-27

v1.3.0 2024-11-07

4.2. DATA COLLECTION

4.2.1. Data Collection Summary up to M14

The first pilot sessions were conducted in M10-13 at UM and SUPSI premises and aimed
to test Magic XRoom and the proposed data collection protocol with 31 participants.
Furthermore, the collected dataset was used to adjust the personalization enablers
pipeline to the Magic XRoom data format. Table 8 summarizes the first data collection
pilots, and Table 9 shows the gender distribution of the first pilot participants.

A preliminary analysis of the pilot session data revealed highly unbalanced data, as
shown in Figure 20, which motivated some changes in the data collection protocol in
order to elicit the least present classes, i.e., boredom and anxiety.

Table 8. Data collection pilots’ statistics.

Dates Location
Number of

participants
Purpose

January-February

2024
SUPSI 20 Testing Magic XRoom

January 2024 UM 13

Testing Magic XRoom, obtain data input

format to implement enabler

components for bio-measurement

modality.

43

D3.4 - XR2Learn enablers

Figure 20. Preliminary analysis of the pilot session data showing the distribution of
engagement levels

Table 9. Gender distribution for the first data collection pilots.

Location Participants Males Females

SUPSI 20 17 (85%) 3 (15%)

UM 13 10 (76.92%) 3 (23.08%)

The data collection study (including consent forms and questionnaires) has been
approved by SUPSI's and UM's ethics committees before commencing the data
collection pilot sessions. Additionally, we adhered to the data management guidelines
outlined in D1.2 “Data Management Plan”.

4.2.2 Data Collection Updates M15-M26

Data collected in the project's first year primarily served as a template for the
Personalization Enablers. It informed the format and structure of the data needed to
develop its components. During months 15-26, UM and SUPSI collected the second
pilot data to gather data for training models within the personalization tools.

4.2.2.1. Data Collection Protocol

For the second data collection pilot, SUPSI and UM recruited 45 participants.

The data collection protocol from the first pilot reported in the first version of D3.2
has been extended to address the known challenges. Specifically, the new data
collection contains three parts: baseline measurements, calibration rounds, and main
data collection.

The baseline measurements part involves the participant sitting in silence for two
minutes while wearing all VR equipment and sensors. This step ensures that data is

44

D3.4 - XR2Learn enablers

being recorded successfully and gives participants an opportunity to remain calm and
not feel agitated during the study.

Next is the calibration round, where participants play each of the four games for one
minute each. This allows them to understand the mechanics and physics of each game,
ask questions about the games, and become accustomed to the VR environment.

Finally, the main data collection occurs, with participants playing each game for
approximately two and a half minutes. By this stage, they have learned how to play the
games and are more familiar with the extended reality (XR) experience.

To participate in data collection, subjects were required to read a participant
information sheet, sign the consent forms, and complete a pre-study questionnaire.
Furthermore, after the study, the participants were encouraged to complete an
anonymous post-study survey, where they could share their experiences.

The following shared folder contains all resources utilized during data collection,
including the participant information sheet, the consent form template, the complete
data collection protocol, and pre- and post-study questionnaires links, and the poster
used for participants recruitment:

https://surfdrive.surf.nl/files/index.php/s/sT2gpg31nZ8Xmmg

4.2.2.2. Collected Data Analysis

As shown in Table 10, 45 participants, including 34 males and 11 females, participated
in the data collection experiments at SUPSI and UM within two months. This section
presents a brief overview of the collected dataset.

Table 10. Data collection overview.

Dates Location Participants
Amount of

data

Amount of

labeled data
Purpose

November-

December

2024

SUPSI 23 7.5 hours 5.5 hours

Collect data for

training AI models.
November-

December

2024

UM 22 10.5 hours 4.5 hours

Survey analysis

During the second data collection, we focused our recruitment efforts on attracting
female participants to achieve a more balanced gender distribution in our dataset.
However, achieving this balance has been challenging, as most of the participants come
from computer and engineering departments, which still have a significant gender
imbalance. These fields tend to have a higher number of male students at both UM
and SUPSI. Despite these challenges, we successfully increased the percentage of
females in our dataset for the second data collection from approximately 23% to nearly
37% at UM. Table 11 shows the age and gender distribution of the second pilot
participants.

https://surfdrive.surf.nl/files/index.php/s/sT2gpg31nZ8Xmmg

45

D3.4 - XR2Learn enablers

Additionally, we conducted exploratory data analysis and reported multiple statistics
for participants who completed the pre- and post-study questionnaires in this section.

Table 11. Gender and age statistics.

Location
Mean age

(std)
Males

Male mean age

(std)
Females

Female mean

age (std)

SUPSI 26.8 ± 8.3 20 (86.95%) 27.1 ± 8.4 3 (13.05%) 25.3 ± 9.2

UM 27.2 ± 5.8 14 (63.64%) 27.8 ± 4.8 8 (36.36%) 26.5 ± 7.0

Figure 21 shows the self-reported proficiency of subjects with computers and VR
technology. While most participants identified as being proficient with computers and
electronic devices, they are generally not very experienced with VR technology.

Figure 21. Proficiency of users with electronic devices and familiarity with Virtual
Reality (upper – UM, lower – SUPSI).

According to the anonymous post-study questionnaire, more than half of the
participants felt very comfortable during data collection and found this experience
satisfying, as shown in Figure 22.

46

D3.4 - XR2Learn enablers

.

Figure 22. Comfortability and satisfaction levels during data collection (upper – UM,
lower – SUPSI).

Nevertheless, a significant fraction of subjects reported no signs of physical discomfort
during or after the session (Figure 23). According to their responses, they experienced
the following conditions: “Little Nauseous near the end”, “A bit of eye strain at the end
of the session”, “Headache in the last minute or two”, “Headset was not very
comfortable and when it moved it made me dizzy”, “some numbness where the
headset was sat”, “eyes hurting”, “headache, motion sickness, little nausea, if I was in
the VR for much longer I would be very uncomfortable”, “dizziness with adjusting the
VR clarity”, “I was standing for too long, I started to feel my feet”.

Furthermore, in Figure 23, it can be observed that females reported experiencing more
physical discomfort during the study sessions compared to males. This finding
contradicts a study by Larson et al. (1999)12, which found no evidence of gender
differences in VR environments regarding females' higher susceptibility to
cybersickness. However, it's important to note that the difference in reports of physical
discomfort between females is small due to the limited number of female participants.
For example, at UM, 5 females reported discomfort while 4 did not; at SUPSI, 2 females
reported discomfort and 1 did not. Therefore, although our results contradict those of
Larson et al., the difference is not significant enough to draw definitive conclusions.
Further studies should focus on gender-based discomfort in VR to provide more
insights.

12 Larson, Peter, et al. "Gender issues in the use of virtual environments." CyberPsychology &
Behavior 2.2 (1999): 113-123.

47

D3.4 - XR2Learn enablers

Figure 23. Physical discomfort experienced during or after data collection(left – UM,
right – SUPSI).

Label distribution

One of the main issues faced during the first data collection pilot was the highly
unbalanced distribution of labels. For the second round of pilots, we have updated the
scenarios in Magic XRoom and the data collection protocol to elicit more examples of
boredom and frustration. Furthermore, participants report their feedback on a
continuous scale—this can be used to apply different thresholding functions to assign
categorical levels. This section analyses the label distribution obtained in the dataset
collected within the second pilot.

During the first data collection pilots before M14, it was noticed that users often
(around 90% of feedback messages) report engagement, which results in a highly
skewed distribution of labels for training (as shown in Figure 20). In the newer versions
of Magic XRoom, users provide feedback on a continuous scale between 0 and 1, where
zero corresponds to boredom, 0.5—engagement, and 1—frustration (Figure 19). We
present the distributions of the reported values per subject in Figure 24.

Figure 24. Distribution of continuous engagement levels per subject (left – UM, right
– SUPSI).

As can be observed in Figure 24, the values for multiple subjects are still centered
around 0.5 (engagement). Figure 25 illustrates the distribution of continuous
engagement levels aggregated for all subjects.

48

D3.4 - XR2Learn enablers

Figure 25. Distribution of continuous engagement levels for all subjects (left – UM,
right – SUPSI).

Furthermore, in the current version of training and inference tools, continuous
engagement levels can be converted into distinct categories based on provided
boundaries. Figure 26 illustrates the distribution of categories with equally wide
boundaries per category (Bored [0.0, 0.33], Engaged [0.34, 0.66], Frustrated [0.67, 1])
and narrower engagement borders (Bored [0.0, 0.44], Engaged [0.45, 0.55], Frustrated
[0.56, 1]). The flexible thresholding has also been integrated into Training Tools and can
be used to train models to distinguish high-engagement episodes.

49

D3.4 - XR2Learn enablers

Figure 26. Distribution of categorical engagement levels for all subjects (upper – UM,
lower – SUPSI).

We computed the distribution of feedback categories per game and visualized it in
Figure 27. Interestingly, despite different datasets collected at different locations (UM
and SUPSI), similar trends in labels can be noticed. For example, it is clear that users
find the Color Words game more engaging, while Canvas Painter and Tower of Hanoi
make users feel frustrated and bored more often than other games, respectively. This
analysis can further inform specific emotion elicitation while collecting data with Magic
XRoom in the future.

Figure 27. Distribution of categorical engagement levels for each scenario in Magic
XRoom (left – UM, right– SUPSI).

Overall, subjects still mainly reported engagement. Nevertheless, adjusting the
boundaries for each category can balance the distribution of labels and isolate
segments with the highest engagement levels. In future work, defining individual
boundaries and/or normalizing engagement levels per subject might also be an
interesting approach to explore.

4.2.2.3. Training Models with Collected Data

The dataset collected with Magic XRoom is used to train and evaluate models from the
Training Tools (Section 3.2). To evaluate how models generalize to new subjects, we
split data into three sets based on subjects. The test set contains data from 10% of
subjects and is used to report the final performance of models. The remaining data is
used for training and validation purposes: 10% of the remaining subjects are used for
validation between epochs, and the rest are used for training.

During the initial experimentation, we noticed that the models suffer from class
imbalance and are biased toward the majority class, resulting in poor performance. In
this case, regardless of input, the model almost always predicts the majority
engagement category. We denote it as a naive model.

To address this issue, we conducted multiple experiments in which we tried to tune
hyperparameters. Namely, we experimented with different overlapping proportions in
data segmentation, boundaries to transform continuous engagement levels into
categorical ones, class weights for loss function, and other hyperparameters related to
model architectures. The best results obtained in this series of experiments are shown
in Table 12.

50

D3.4 - XR2Learn enablers

Table 12. Results of model evaluation. All metrics were computed on the
test subjects, which data were unseen during training.

Dataset Modality Model
F1-score

(macro)13

Recall

(macro)

Precision

(macro)

SUPSI

Bio-measurements

Naive 0.20 0.33 0.15

Best 0.40 0.41 0.41

Body-tracking

Naive 0.19 0.25 0.15

Best 0.46 0.52 0.46

UM

Bio-measurements

Naive 0.26 0.33 0.23

Best 0.36 0.39 0.37

Body-tracking

Naive 0.23 0.33 0.17

Best 0.35 0.39 0.33

According to the obtained result, the models in Training Tools outperform the naive
baseline. Nevertheless, the performance of models is still sub-optimal. There are a
couple of reasons that might cause such behavior. First, it is a challenging task for a
model to generalize well to unseen subjects in validation and test data with emotion
annotations that are subjective. Exploring a more personalized approach that calibrates
and re-train models for each subject might be an interesting research line. Second, the
bio-measurement sensor is attached to the fingers of the subject, which may cause
motion artifacts (noise) in raw data. While it is possible to measure galvanic skin
response and blood volume pulse at other locations on the human body, most sensor
manufacturers do not give access to raw data and/or do not provide API for real-time
streaming. The investigation of the impact of the placement of the sensors is planned
as future work.

13 Macro averaging: compute the metric value per class and average across classes.

51

D3.4 - XR2Learn enablers

5. INTEGRATION ENABLERS AND BEACON
APPLICATIONS

One important objective for Task 3.2, sub-phase two, is demonstrating the integration
between enablers and beacon applications. From a technical perspective, integrating
Personalization Enablers and a beacon application requires developing a VR application,
i.e., a beacon application, that can (1) collect and write data from users (number 1 in
Figure 28), and (2) send and receive information to and from the Personalization
Enablers (number 2 in Figure 28). The VR application must transmit contextual
information and receive suggestions for personalization from the Personalization
Enablers. The user data can then be read and processed by Inference and
Personalization Tools to calculate and provide personalized suggestions to the VR
application, which in turn will adapt the learning experience based on the suggestions
received by the Personalization Enablers.

Figure 28. A high-level overview of the integration between enablers and beacon
applications. Number 1 represents the functionality of collecting and writing user

data, while number 2 represents the functionality of sending and receiving messages
from and to the Personalization Enablers.

Therefore, to implement the integration of enablers and beacon applications, we
divided the effort into three tasks, as listed below. The first two tasks are under the
scope of Task 3.2, as they involve enablers preparation, whereas the third task is under
the scope of Task 3.1, as it involves beacon applications modifications.

1. Develop a Unity Personalization Integration Template (UM);
2. Develop a data collection module/plugin-in for Unity applications (SUPSI);
3. Expand Beacon Application 1 - “Laser Cutting Machine” (LS) by:

a. including data collection functionality
b. including communication with Personalization Enablers functionalities,

and
c. automatically adapt the educational content according to the suggestions

received from the Personalization Enablers.

52

D3.4 - XR2Learn enablers

In the following sections, we describe what each of the above-listed tasks entails, their
role in completing integration between Personalization Enablers and Beacon
Applications, and the progress achieved.

5.1. PERSONALIZATION INTEGRATION TEMPLATE

5.1.1. Description

The personalization integration template has been delivered as an open-source GitHub
repository containing a Unity example project showcasing how to communicate a Unity
Application with the Personalization Enablers. Personalization Enablers and Unity
applications communicate by exchanging messages using the Pub/Sub protocol, which
was implemented using the Redis technology as a message broker.

Thus, this example includes the source code to:

● Connect to Redis in Unity;
● Create a publisher and a subscriber in Unity;
● Sending and receiving message formats to communicate with the

Personalization Enablers;
● A graphic interface, as depicted in Figure 29;
● Documentation on how to set and use this template;
● An already compiled ready-to-use build for Linux x86_64 architecture14.

Figure 29. The graphical interface of the Personalization Integration Template (green
numbers are not part of the software’s interface; Section 5.1.4 describes their

functionalities)

This tool facilitates the integration of the Personalization Enablers into third-party
Unity applications. To that end, a developer who wants to integrate their VR Unity

14 https://drive.google.com/drive/folders/1y3j8F7yACtt1lwrk7ARYgFjxEEVgG4f6

https://drive.google.com/drive/folders/1y3j8F7yACtt1lwrk7ARYgFjxEEVgG4f6

53

D3.4 - XR2Learn enablers

application with the Personalization Enablers functionalities should refer to this project
and include the source code into their VR Unity application.

5.1.2. Prerequisites

1. NuGets in Unity (to Install NRedisStack);
2. NRedisStack NuGets (to connect Unity to Redis);

5.1.3. Installation

Installing NuGets in Unity (official documentation15)

Overview install instructions:

In the project, go to Window->Package Manager->[+]->Add Package From git URL and paste
the URL for the NuGetForUnity:
https://github.com/GlitchEnzo/NuGetForUnity.git?path=/src/NuGetForUnity

Install NRedisStack NuGets

Go to NuGet For Unity->Online (tab) and search for NRedisStack. Select this package and
click on Install All Selected.

5.1.4. Basic User Manual

This section contains instructions on how to run the Personalization Integration
Template, including the configuration required and basic functionality to test the
template as a Unity application.

Running the App

1. Set the Redis connection string to the IP:PORT where the Redis instance is
running (Number 1 in Figure 29).

2. Then click on Connect (Number 2 in Figure 29).
3. Select User Level and Activity Level (Numbers 3 and 4 in Figure 29).
4. Click on Start Activity to publish the message that will start an activity (Number

5 in Figure 29).
5. Click on Stop activity to publish the message that will stop the current activity

(Number 6 in Figure 29).
6. You will be able to see the Next suggested activity level on the Dropdown to the

right (Number 7 in Figure 29).
7. Clicking on Disconnect will end the connection to the Redis instance (Number 8

in Figure 29).

Redis Connection

The UIExample.cs script contains a script with a simple example of how to connect
with Redis as both a publisher and subscriber and how to translate the Redis messages
into Unity internal variables.

Message Formats

The message formats exchanged by the VR application and the Personalization Tool
are as follows:

15 https://github.com/GlitchEnzo/NuGetForUnity?tab=readme-ov-file#unity-20193-or-newer

https://github.com/GlitchEnzo/NuGetForUnity.git?path=/src/NuGetForUnity
https://github.com/GlitchEnzo/NuGetForUnity?tab=readme-ov-file#unity-20193-or-newer

54

D3.4 - XR2Learn enablers

1. Unity application as Publisher, i.e., sending messages (two channels, Figure 30):

Figure 30. Messages format the Personalization Integration Template sends when
communicating with the Personalization Tool, 1) message indicating the start of

activity (top), 2) message indicating the end of activity (bottom).

2. Unity application as Subscriber, i.e., receiving messages (one channel, Figure
31):

Figure 31. Message format the Personalization Integration Template expects to
receive from the Personalization Tool.

Important Point

55

D3.4 - XR2Learn enablers

Running complex unity code in the method used for handling the subscribed Redis
messages can be complicated when debugging in Unity - (e.g.,
ProcessMessageNextActivityLevel in the UIExample.cs).

It is best for the methods that handle the subscribed messages to only update primitive
variables and have the other standard Unity method update more complex components
based on the primitive variables just populated.

5.2. INTEGRATION OF MAGIC XROOM AND PERSONALIZATION
ENABLERS

To illustrate the integration of Personalization Enablers and VR applications with the
capability to collect user data, we implemented a demonstration using Magic XRoom.
In this demonstration, we integrated Magic XRoom (a VR application with the
functionality of collecting and recording users’ data through sensors) with
Personalization Enablers, achieving near real-time latency.

The demonstration setup involves two machines, as shown in Figure 32:

● Machine 1 (Windows OS): This machine runs the Magic XRoom application and
deploys the Inference Preprocessing component (per modality) from Inference
Tools (refer to Section 3.3.2.1). It is essential for this component to be deployed
in the same machine as Magic XRoom, as it reads data files recorded by Magic
XRoom.

● Machine 2 (MacOS, Linux or Windows OS): This machine is responsible for
deploying all the other Personalization Enablers for Inference, Personalization
Tool and Personalization Dashboard. These components could be deployed in
Machine 1; however, it would not be practical because the computational
processing power required by Magic XRoom would leave other components
without the resources they need to function.

Figure 32. Hardware setup with two machines for the demonstration of the
integration of Magic XRoom and the Personalization Enablers. These machines are

connected to the same internal network.

During the demonstration, the user engages with Magic XRoom while using Shimmer
sensors. Magic XRoom collects and records the multimodal sensor data in near real-

56

D3.4 - XR2Learn enablers

time. For this demonstration, we focused on two modalities: bio-measurements and
body-tracking. The inference preprocessing component reads the data generated by
Magic XRoom, processes it into features, and organizes these features into temporal
windows. Each feature’s time window is then sent as a message to the emotion
classification component for each modality (as described in Section 3.3.2.1) .

The emotion classification component utilizes a trained machine learning model
(trained using the Training Tools in Section 3.2) to classify the user's engagement into
three emotional states: engagement, boredom, or frustration. Subsequently, this
classification is sent as a message to the multimodal fusion component.

The multimodal fusion component receives the user's engagement classification from
different modalities, organizes and matches them to the corresponding time window
(Section 3.3.2.2), and then executes the multimodal fusion, generating a single
multimodal prediction for each given time window. For bio-measurements and body
tracking modalities specifically, each time window spans five seconds. Finally, the
multimodal fusion component sends the fused calculated prediction to the
Personalization Tool.

Lastly, the Personalization Tool receives messages from the multimodal fusion
component and combines them with the user and activity challenge levels information,
using them to compute personalized suggestions in the form of activity challenge
levels.

The multimodal predicted emotions, the user and activity challenge levels, and the
Personalization Tool suggestions can then be visualized in real time through the
graphical interface of the Personalization Dashboard. Figure 33 illustrates this process
in the demonstration. In this demonstration, we utilized the Personalization Dashboard
to simulate the Unity application input, i.e., user and activity challenge levels
information, since Magic XRoom does not include this functionality, and the update of
BA1, as described in Section 5.4, is still in progress.

57

D3.4 - XR2Learn enablers

Figure 33. Integration of Magic XRoom and the Personalization Enablers. The top left
shows the user playing Magic XRoom while wearing sensors and the user’s view. The
bottom left shows a diagram of the information exchanged by the components in the
demonstration. The top right shows the Personalization Dashboard (as illustrated in

Figure 15) . The bottom right shows a command terminal with the inference
preprocessing running in the Windows machine.

This demonstration showcases the near real-time capabilities of the Personalization
Enablers in processing multimodal input data to identify user engagement levels.
Combining this information with additional context—such as user levels and activity
challenge levels—generates personalized suggestions that can be implemented by the
VR application to adapt the user’s learning experience automatically. It also highlights
the robustness of the Personalization Enablers' software architecture, which allows
different components to be deployed on multiple machines and communicate with one
another through a network. This flexibility is essential for managing and ensuring the
hardware requirements of each enabler or tool.

5.3. DATA COLLECTION MODULE/PLUGIN

5.3.1. Description

The Data Collection Module is a software plugin currently under development, designed
to configure and manage sensors and devices for data collection purposes, as shown
in Figure 34. Extracted from a larger application (Magic XRoom), it is being restructured
to function as a standalone tool to boost its adoption by third parties. The module will
support the collection of various types of data and save the results in separate CSV
files for seamless storage and accessibility. This modular approach is intended to
simplify integration into different systems and streamline data handling workflows.

Incorporating this standalone module into a VR Unity application is an essential step
for accessing the Personalization Enablers functionality since the Personalization
Enablers require this collected data as input to process and produce personalized
suggestions for adaptation.

Figure 34. Data Collection module workflow

5.3.2. Prerequisites

The Data Collection Module will be distributed initially as a standalone C# library,
requiring a development environment compatible with .NET. This version will allow

58

D3.4 - XR2Learn enablers

integration into custom C# applications with minimal setup. In the future, the module
will also be available as a Unity package, enabling seamless integration with Unity
projects.

To use the module, users should have a basic understanding of C# programming and,
for the Unity package, familiarity with Unity's development environment and asset
management.

5.3.3. Installation

The Data Collection Module will be available for installation in two formats. Initially, it
will be distributed as a standalone C# library, which can be added to a project by
referencing the library in the development environment. The documentation will
provide instructions for downloading and including the library, along with any required
dependencies.

In its later release as a Unity package, installation will involve importing the package
directly into a Unity project via Unity's Package Manager or manually importing it.
Detailed steps for integrating the package, along with any configuration settings, will
be outlined to ensure smooth implementation.

5.4. FUTURE WORK IN INTEGRATION OF BEACON APPLICATIONS
WITH PERSONALIZATION ENABLERS

The challenge of integrating Beacon Applications and Personalization Enablers was
divided into different sub-tasks, which progress was reported in the previous
subsections. To facilitate this process for both XR2Learn partners and third parties,
we:

1. have created a Unity Integration Template which includes all the main
functionalities and the required communication channels and its documentation
have been released,

2. showcased the integration of Magic XRoom with Personalization Enablers in a
real-time setup has been showcased, and

3. are finalizing the creation of the data collection modules from Magic XRoom as
a standalone tool.

It is worth mentioning that each of these steps has been tested and validated
individually and successfully integrated with additional parts as a proof of concept to
demonstrate their feasibility for use by third parties.

As a further step to demonstrate a full integration of Personalization Enablers and
Beacon Applications, we will utilize Beacon Application 1: Laser Cutting Machine as a
showcase. This Beacon Application will be updated to a new version, which will include
the data collection modules extracted from Magic XRoom and implement the Unity
Integration Template to communicate with the Personalization Enablers.

Beacon Application 1 will additionally extend its functionality to automatically adapt
the educational content according to the suggestions received from the Personalization
Enablers. Some examples of content adaptation could be presenting more hints to the
user, and skipping or repeating challenging levels, among others. The Beacon
Application 1 update work is planned to commence within the first quarter of 2025.

59

D3.4 - XR2Learn enablers

6. CONCLUSION

This document describes the progress achieved in Task 3.2, "XR2Learn Enablers", during
the months 14 to 26 of the XR2Learn project, which is part of XR2Learn Phase B, the
second sub-phase as described in Section 1.2.2 of the proposal document. Task 3.2
focuses on designing, implementing, and delivering novel enablers for XR applications.
During the second sub-phase, work on improvements to the enablers and the
integration of enablers and beacon applications has been conducted.

The enablers' improvements involve adding a new modality, multimodal capacity, low
latency (near real-time) Inference and Personalization, more sophisticated
Personalization heuristics, integration with data collection tool (together with new data
collection conducted), new trained ML models available, and documentation extension,
among others. The report also includes information on additional enablers developed
beyond the project proposal. These enablers have been updated, and new ones have
been created. These include Magic XRoom (a data collection tool), a command line
interface to make the enablers more user-friendly, the personalization enabler
template (a tool to automate and facilitate creating new personalization enablers), and
a graphical user interface dashboard to demonstrate, debug and facilitate the
communication between Personalization Tool (Enabler 6), Inference Tools, and XR Unity
applications.

As to lay the foundations of integration between enablers and beacon applications,
two sub-tasks have been conducted in Task 3.2:

1) The data collection modules from Magic XRoom have been validated in real-
life scenarios and are in the process of being extracted and converted into an
independent module that can be re-utilized within a beacon application,
extending its functionality to collect user data.

2) A new enabler was created, Personalization Integration Template, a Unity
application to showcase and facilitate the integration process between a Unity
application with the Personalization Enablers.

Additionally, we have demonstrated the integration of Personalization Enablers and
Magic XRoom, showcasing their near real-time processing capability.

As the last step in completing the integration of enablers and beacon applications,
Beacon Application 1, the laser-cutting machine, will be extended to include the two
sub-tasks described above as a proof of concept. This update on Beacon Application 1
is planned to commence in the first quarter of 2025.

All tools described were developed following established software engineering
practices to foster principles of open science, such as reproducibility, open access,
transparency, software sustainability, and quality. As listed in Table 2, they are also
available as open-source repositories on GitHub.

Lastly, we plan to start writing for a scientific publication featuring the Personalization
Enablers in March 2025. We aim to publish it in a relevant Q1 scientific journal, which
will be determined in the coming months.

