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- EXECUTIVE SUMMARY 

This deliverable, D3.2 XR2Learn enablers, outlines the development of innovative tools 
designed to foster the creation and integration of Extended Reality (XR) learning 
applications enriched by affective computing. The contributions of the proposed 
enablers are two-fold: to reduce the workload required for the development of XR 
learning applications and to promote the personalization and enhancement of the 
learning experience in an effortless and seamless manner. In the context of Task 3.2, 
the following tools have been developed: 

● Enabler 1: The Authoring Tool, a key component that simplifies the creation of 
XR applications specifically tailored for educational purposes. This tool allows 
educators and developers to easily build immersive learning environments. 

● Enablers 2-5: These enablers focus on the development of tools for automatic 
emotion recognition, utilizing various input data modalities. With the aim of 
facilitating the use of not only public datasets but also "in-house" data in an 
effortless manner, the Enablers 2-5 include: 

○ Self-Supervised Learning: operates without the need for labeled data to 
pre-train Deep Learning models, allows to train models on emotions with 
less annotated data and resources. 

○ Supervised Learning: requires labeled data and provides a structured 
approach to identify user emotions from input modalities. 

● Enabler 6: This enabler represents the last step in the affective computing 
pipeline, effectively integrating the capabilities of the automatic emotion 
detection components (enablers 2-5) and facilitating the use of its output as a 
source for the adaptation of the learning material. Its primary function is to 
utilize the detected emotions of the user to suggest appropriate learning 
activities. This personalization aspect ensures that the learning experience is 
optimized for each individual, making it more engaging and effective. 

● Magic XRoom: This innovative feature serves as a tool for collecting data. This 
data is crucial for the evaluation of the enablers, as it provides the necessary 
input for emotion detection algorithms. 

In conclusion, the deliverable presents a set of novel enablers that can be utilized to 
accelerate the development of educational XR applications. Moreover, by integrating 
XR applications with required equipment, data collection modules and emotion 
recognition enablers, it paves the way for a more immersive, personalized learning 
experience that is adaptable to the emotional states of the users, thereby enhancing 
the overall effectiveness of the educational process. 
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1. INTRODUCTION  

This deliverable reports the progress achieved in Task 3.2, "XR2Learn Enablers" during 
the first 14 months of the XR2Learn project. This covers the developments made during 
the first sub-phase of Phase B described in Section 1.2.2 of the proposal document. 
Being a part of Work Package 3 XR Technology Push, Task 3.2 is focused on designing, 
implementing and delivering novel enablers for XR applications. Thus, the concept of 
enablers is central to this task. Essentially, they are building blocks or components 
that can be used to speed up the development of XR-based applications. This, in turn, 
makes developing XR applications more manageable and cost-effective, turning these 
applications more attractive and accessible.  

The XR2Learn project introduces two types of XR enablers, namely the authoring tool 
(Enabler 1; Section 2) and affect detection, or emotion recognition, enablers (Enablers 
2, 3, 4, 5, 6; Section 3). As highlighted in the proposal document, the former is a “tool 
for designing more efficiently 3D spaces (e.g. construction/manufacturing environments) 
under physical space constraints”, whereas the latter aims to “infer user perception 
such as affect detection, emotion recognition and AI based learner progress 
assessment” using three modalities, namely bio-measurement, speech and/or body 
tracking signals. This document specifies the enablers and describes the progress of 
their development within the first phase of the task. The current progress in emotion 
recognition enablers is showcased using one modality, namely audio, acquired from 
open-source data. In the subsequent phase of the project other modalities (e.g. bio-
measurements, body-tracking) are planned to be integrated with the enablers following 
the data collection required for these modalities. 

We also report the work conducted on components and functionalities beyond the 
project proposal with regards to Task 3.2. They were identified by partners contributing 
to the task as necessary for the development of the enablers based on the conducted 
preliminary research and drafting of the initial system design. These components 
include: 

● Magic XRoom (Section 4.1) is a data collection tool which is vital for acquiring 
training data for emotion recognition enablers in education settings. The 
preliminary research on open-source datasets, conducted in the first months of 
the project, identified multiple challenges that are faced when building models 
using these data. A common challenge for all modalities is that there is a lack 
of data corresponding to educational settings annotated with the appropriate 
emotional models that are focused on user engagement. Nevertheless, training 
Machine and Deep Learning models for emotion recognition requires some 
amounts of annotated data, which we propose to collect through Magic XRoom. 

● Command Line Interface (Section 3.5) is an automated interface that provides 
users with a single entrypoint for Enablers 2-6 allowing them to execute the 
whole emotion recognition pipeline. Currently, CLI is integrated with Enablers 2-
6, which supports audio modality provided from open-source data. 

● Demo User Interface (Demo UI; Section 3.4.3) is a web-based application 
implemented to display the communication between Inference and 
Personalization tools (Enabler 6), and the XR Unity application.   

The contributions of this deliverable to other tasks and deliverables in Work Package 
3 can be summarized as follows: 

● Task 3.1; Deliverable 3.1: the design of the tools and components facilitate the 
integration of enablers with Beacon Apps. In particular, the Personalization Tool 
(Enabler 6) exploits the Publisher/Subscriber messaging protocol that is 
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intended to provide asynchronous communication between the tool and XR 
applications in Unity. Furthermore, a user-friendly Demo UI has been 
implemented to showcase this communication and workflow of the emotion 
recognition enablers. 

● Tasks 3.3, 3.4; Deliverable 3.3: the implemented enablers are delivered as open-
source code repositories with consistent documentation style and thorough 
README files to guide users through exploiting the enablers. These guidance 
documents will be further extended into the Wiki pages concerning XR2Learn 
enablers. 

This document splits the reporting of technical work in five main sections that can be 
summarized as follows: 

● Section 2 describes the Authoring Tool (Enabler 1) starting with a description of 
this Enabler’s motivation and main functionalities. This section then contains 
prerequisites, installation and basic user manual information. 

● Section 3 presents the technical design and development of emotion recognition 
tools, or Enablers 2-6. This section begins with preliminary research conducted 
on emotion representation learning and emotion recognition in audio, bio-
measurements, body tracking modalities. The conducted analysis explores the 
effectiveness and efficiency of the state-of-the-art emotion recognition 
techniques with the specified modalities. Besides, it comments on challenges 
and limitations that can be faced when  developing these models within 
Enablers 2-6. Furthermore, it describes each enabler and additional components 
developed to support the enablers' functionalities, including their application, 
prerequisites, installation instructions, a basic user manual and details on open-
source licenses.  

● Section 4 introduces Magic XRoom as the suggested and developed data 
collection tool. This section also follows a similar structure summarizing the 
prerequisites, the instructions to set it up along with the required equipment, 
as well as the technical documentation of XRoom. 

● Section 5 summarizes the developments made and progress achieved in Task 
3.2 up to Month 14 of the project. Furthermore, this section outlines a list of 
actions and tasks considered to achieve the two main objectives of the second 
sub-phase of Phase B: improving enablers and integrating them with Beacon 
applications.  
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2. AUTHORING TOOL: ENABLER 1 

2.1. INTERACT: AUTHORING TOOL 

2.1.1. Technical Documentation 

2.1.1.1. Description 

To meet the evolving demands of learning environments and educational training 
needs, there is a growing requirement for authoring tools to allow rapid design and 
development of XR training scenarios built upon established frameworks. It is, 
therefore, crucial to develop authoring tools that enable the swift creation of training 
scenarios supporting a broader range of features beyond basic 3D object manipulation 
and avatar navigation in virtual environments. These tools should address aspects such 
as ergonomics, advanced physics for objects, and scenario creation.  

To achieve this goal, the first enabler provided to the XR2Learn community is an  
authoring tool called INTERACT, delivered as a Unity plugin that can significantly reduce 
the time needed to develop intelligent tutoring systems (ITS). The plugin is a no-code 
(or low-code) generic tool for creating physics-based VR training scenarios. INTERACT 
is based on a cutting-edge physics engine, allowing realistic interactions such as 
collision detection and ergonomic evaluations. The plugin empowers users to create 
physically realistic VR simulations for diverse applications, including training in heavy 
industry, education, and energy sectors, using 3D data (such as CAD or point clouds) 
imported into the authoring tool. We demonstrated the practical application of 
INTERACT by developing Beacon Application 1 (consult Deliverable D3.1 for further 
information), a training program for a laser cutting machine. The resulting XR 
application offers a virtual reality training scenario focusing on machine maintenance 
tasks. Users are guided through a step-by-step process of using a laser cutting 
machine, with their performance validated through a final score.  

The main features are summarized as follows: 

• Embedded physics engine: handling multi-body dynamics, collision detection, friction, 
and kinematics, providing realistic behavior for objects in a 3D environment. 

• Advanced collision detection: This feature allows accurate and efficient detection of 
collisions between objects, even when dealing with complex models.  

• Cables: The software can simulate cables and flexible beams using finite element 
analysis, providing realistic representations of these elements in the 3D environment. 

• Grab: This feature allows users to manipulate 3D objects directly with their hands, 
providing a more natural and intuitive way to interact with the virtual environment 
whether using VR controllers or hand-tracking systems. 

• Scenarization: This module is designed for assembly training, which allows creating 
and editing complex assembly scenarios. This module supports gamifying scenes and 
creating a pedagogical scenario through a node-based graphical interface. 
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- Figure 1. List of modules and features inside the 
INTERACT authoring tool 

 

2.1.1.2. Prerequisites 

To use Enabler 1, INTERACT, the following requirements must be met:  

● A VR-ready computer (appropriate graphics card: see FAQ) 
● Latest version of SteamVR installed (minimum recommended version 2.1) 
● Unity version 2022.3 LTS (minimum and recommended) installed with a 

valid Unity Pro license 
2.1.1.3. Installation 

INTERACT is distributed as a Unity package. The installation of the INTERACT package 
in a new Unity project simply consists of importing the *.unitypackage into the project. 

You can do it by dragging and dropping the unitypackage in the Project tab, or using 
the menu Assets > Import Package > Custom Package... : 

https://light-and-shadows.com/documentation/interact/faq/#what-is-the-recommended-hardware-and-software-configuration
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- Figure 2. INTERACT installation steps 

2.1.1.4. Basic User Manual 

Creating an INTERACT scene and configuring the XR avatar 

The initial steps when creating a new simulation are: 

● Start from an empty Unity scene (File/New scene) 
● In the INTERACT menu, click on "Create New Simulation" 
● Choose between the two preconfigured environments (White Lab or Factory). 

 

- Figure 3. INTERACT preconfigured environments 

The next step is to choose the hardware devices (Display Device, Hand Tracking, Body 
Tracking) through which the user will interact in the XR environment. 
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- Figure 4. INTERACT hardware configuration and 
avatar creation 

As a result, a default environment and a ready-to-use avatar have been created in the 
Unity scene and hierarchy. If a VR device is not available, the desktop player can be 
used in order to visualize the scene. 

INTERACT allows users to switch from the working session to the VR simulation quickly. 
To that end: 

● In the Unity toolbar, click on the Play button  
● Put on a headset, a headset user should now visualize the environment at scale 

1:1. 

 

Importing 3D objects and point clouds 

The use of the Pixyz plugin is strongly recommended in order to import CAD models in 
Unity. PiXYZ plugin is delivered together with Unity Industrial licenses. Supported 3D 
formats can be found in the following link: Supported formats | Pixyz Plugin | 2.0.3 

To import 3D CAD models into Unity3D: 

● Click on Interact > Import > CAD model 
● In the explorer, select the desired CAD file and click on Import. The CAD Import 

Settings window appears. From there, the default import settings can be 
adjusted if needed. 

 

https://docs.unity3d.com/Packages/com.unity.pixyz.plugin4unity@2.0/manual/supported-formats.html
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- Figure 5. Example of 3D object imported with PiXYZ 
and its hierarchy 

 

INTERACT also supports natively point clouds, becoming increasingly popular for 
capturing and analyzing real-world data. Contrary to CAD data, a point cloud is a large 
set of 3D points that represent the surface of an object or environment. These points 
are usually obtained using a 3D laser scanner and can be highly dense, representing 
millions or even billions of points. 

Importing Point Cloud is straightforward with INTERACT using the 
INTERACT/Import/Point Cloud menu. Supported point cloud formats are .ptx, .pts, .las, 
.e57. 

 

- Figure 6. Example of point cloud imported into an 
INTERACT scene 

 

Configuring object interactions and physics 

A physics engine is a software component that simulates physical phenomena, such 
as motion, forces, and collisions, in a virtual environment. In INTERACT, the physics 
engine is responsible for calculating the behavior of objects in the scene based on their 
physical properties and the interactions between them. Some examples of physics 
behavior provided by the INTERACT physics engine are: 

● Collision between objects 
● Part mobilities and constraints 
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● Gravity 
● Friction properties 
● Part grabbing and manipulation 
● Cables 

NB: INTERACT does not use Unity’s default physics engine which is tailored for video 
games and makes assumptions and simplifications incompatible with industrial use 
cases. INTERACT embeds the XDE Physics engine, an interactive physics engine, 
featuring precise collision detection, and multi-body and beam dynamics. 

By default, when 3D objects are imported into INTERACT, they have no physical 
properties assigned to them. This means they cannot interact with or be affected by 
the laws of physics in the scene. To add physics behavior to an object, the following 
steps are needed: 

● Select the object. 
● Click on the INTERACT/Physics/Physicalize object in the toolbar menu (shortcut: 

Shift+P). 
● Choose the type of mobility or constraint to assign to the object (see joint types) 

 

- Figure 7. Physicalizing an object and selecting 
kinematics properties 

 

● Configure the physical properties of the object, such as mass, friction, motion 
constraints in the Inspector. 

The object is then transformed into a so-called Rigid Body, recognized in the hierarchy 
by a gear icon. When launching the simulation, Rigid Bodies will behave according to 
the laws of physics and the chosen mobility type (joint). It will react to collisions as 
well as its children in the physical hierarchy. 

https://light-and-shadows.com/documentation/xrtwin/physics.html#types-of-joints
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- Figure 8. Example of complex kinematic structure 
featuring INTERACT physics engine 

 

Creating a step-by-step scenario 

The next step is the scenarization, where an assembly sequence can be configured. 
Usually, the assembly sequences constitute the practical exercises of a training 
application. The user must define the order in which different parts are assembled to 
form a complete product. This typically involves a series of steps, in which each part 
is added to the product in a specific order. INTERACT helps to create such assembly 
sequences by visualizing the different parts and how they fit together. 

In more detail, INTERACT provides the Scenario Graph to create a hierarchy of steps 
that create an assembly sequence. The user introduces 3D objects and indicates their 
connection through Placing Steps. The user can encode rules for the learning scenario 
to unlock the next steps. For example, the assembly of a wheel can only start if the 
brake disk is in place AND the bolts have been properly screwed. Several options are 
available to describe the assembly process in the Scenario window, including time 
constraints that are required before proceeding to a subsequent step, interaction with 
robots and actuators, among others. A scenario can also include Events, i.e., actions 
that are only triggered under specific conditions. For example, to unwind or activate 
another part when a keypoint is reached. 
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- Figure 9. 3D Visualization of the wheel object. 

 

- Figure 10. Example of the scenario graph and the 
series of steps constituting the assembly process. 

The steps to create a Scenario in INTERACT are described as follows: 

● Create a scenario: INTERACT/Scenarize/Create scenario 
● In the hierarchy, select a part to be used in the scenario. 
● Click on this part and in the INTERACT menu: INTERACT/Scenarize/Make part 

grabbable. 

This makes the part accessible from the scenario and grabbable in the VR. 

Indicate the target of this object: click on INTERACT/Assembly/Create Part Target. The 
target is created and appears as a blue ghost. Place this target where the part should 
go. This creates a Placing Step in the scenario with the corresponding part to place 
and target. 

The Scenario manager automatically handles the visual helpers in runtime (trajectories, 
ghost, instruction panel). In Simulation (when switching to the PLAY mode), the 
transition between steps occurs when the part-to-place reaches its target. 

2.1.1.5. Repository and license 

The INTERACT authoring tool can be found in the project’s GitHub repository at: 

- https://github.com/XR2Learn/en-1-interact 

The public GitHub repository includes most of the core engine and behaviors of 
INTERACT, which are delivered as dll (compiled) files. Additionally, it contains many 

https://github.com/XR2Learn/en-1-interact
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other resources, such as texture samples and scripts, which have been made 
accessible, usable and editable to the users. 

The repository also contains the current version of INTERACT’s assets (runtime and 
Editor behaviors). A link to the official INTERACT delivery system is also included in the 
GitHub repository so that users can access an up-to-date version of INTERACT at any 
time. 

LICENSE 

INTERACT is a proprietary software and distributed as closed source. 

Available versions 

A description of the main changes in the project’s versions can be found at: 
https://light-and-shadows.com/documentation/interact/changelog/ 

2.2. DISCLAIMER  

This document only provides a basic user manual to get started with INTERACT. To 
dive deeper into INTERACT’s functionality, the user can read the complete 
documentation (https://light-and-shadows.com/documentation/interact/) or contact 
the XR2Learn consortium for one-to-one technical guidance.  

https://light-and-shadows.com/documentation/interact/changelog/
https://light-and-shadows.com/documentation/interact/


 

21 
 

D3.2 - XR2Learn enablers 

 

3. EMOTION RECOGNITION TOOLS (ENABLERS 2-6) 

The emotion recognition (ER) tools proposed in the XR2Learn ecosystem aim to 
personalize education scenarios in XR by enabling adaptive learning components that 
dynamically adjust to users based on their proficiency level, affective state (emotions), 
and challenge level of an educational scenario.  

In this section, we describe the five ER enablers, first introduced in the proposal 
document, that were designed and implemented in the context of the XR2Learn 
project: 

- Enabler 2: Emotion representation learning tool, including Self-Supervised 
Learning (SSL) pre-text task and handcrafted features extraction; 

- Enabler 3: Tools for generating pre-trained emotion representations or 
handcrafted features, for one of the modalities exploited in the project 
consortium. Currently, Enablers 2-6 have been implemented and tested for 
speech signals available in open source data; 

- Enabler 4: Tools for building emotion classifiers, in this version, for one of the 
modalities in the consortium; 

- Enabler 5: Tools for fusing multiple modalities (decision-level fusion); 

- Enabler 6: Personalization tool based on the Theory of Flow1. 

Whereas each enabler clearly defines a separate functionality to be implemented, from 
the software engineering perspective, the enablers can be organized into four main 
domains based on their functionalities. A high-level diagram of the proposed 
components is illustrated in Figure 11. All the components within the different domains 
are cross-platform applications that can be hosted on a local or remote machine.  

 

 
1 Nakamura, Jeanne, and Mihaly Csikszentmihalyi. "The concept of flow." Handbook of positive 
psychology 89 (2002): 105. 
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- Figure 11. High-level overview of the five emotion 
recognition enablers (2-6). 

 

A modularized software engineering architecture approach was utilized to deploy 
enablers to foster scalability, flexibility, and dynamic network topology. Different 
components can be deployed in separate machines, allowing for a heterogeneous and 
dynamic deployment of the components. This is essential to provide the necessary 
computation resources for each component. For instance, deep learning training 
components need heavy computational resources. With the proposed enabler’s 
architecture, these heavy components can be deployed in a more robust computational 
machine. On the other hand, other components that do not require as many resources 
can be deployed in other machines and they can all communicate with each other.  

In the proposed architecture, four domains have been implemented to cover the 
functionalities mentioned above the ER enablers: 

1. Training Tools: 

The Training domain covers all enablers associated with Deep Learning model 
training. Specifically, under the context of the Training domain, Enabler 2 was 
implemented providing tools for pre-processing, handcrafted feature extraction, 
and learning emotion representations using Self-Supervised Learning 
techniques. The emotion representations are lower-dimensional descriptive 
features extracted from data in an automated manner by optimized Neural 
Networks. Moreover, Enabler 3 is delivered as a set of tools to be used to extract 
features (pre-trained or handcrafted) from raw data. Finally, pre-trained models 
can later be used to build emotion classifiers given annotated data with 
emotions as required by Enabler 4. All enablers are implemented using industry-
standard Deep Learning frameworks (PyTorch2, PyTorch Lightning3) that support 
accelerated computing on GPUs. It is worth mentioning that all the enables are 
delivered as standalone units for each modality via modern containerization 
tools (Docker4). Motivated by meeting KPI 2.2 (Number of enablers developed, 

 
2 https://pytorch.org/  
3 https://lightning.ai/docs/pytorch/stable/  
4 https://www.docker.com/  

https://pytorch.org/
https://lightning.ai/docs/pytorch/stable/
https://www.docker.com/
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contributed and used by third-parties), such a modular architecture has been 
proposed to facilitate and encourage consortium members, open-call 
participants, and open-source developers to propose and implement novel 
emotion recognition enablers that could be easily integrated into the proposed 
framework. 

2. Inference Tools: 

The Inference domain is a set of components a user will need to exploit and 
evaluate emotion representations and classifiers implemented within the 
Training domain. Most importantly, the Inference domain implements Enabler 5 
by providing a fusion functionality to combine models for a flexible number of 
modalities previously trained in the Training domain. Moreover, additional model 
evaluation and emotion classification components are proposed to assess the 
ER models effortlessly. 

3. Personalization Tool: 

The Personalization Tool exploits the outputs of Training and Inference tools to 
provide personalization of XR scenarios to the users interacting with them. 
Utilizing the user’s predicted emotions as the output of the Training and 
Inference domain, together with contextual information, e.g., a user and activity 
difficulty (challenge) levels, the personalization tool provides personalized 
suggestions on the recommended activity level for the user in educational XR 
applications. 

The Personalization Tool exploits the Publisher/Subscriber messaging protocol 
implemented using Redis5 to provide asynchronous, real-time communication 
between the Personalization Tool, Inference domain and an XR educational 
software implemented using Unity.  

4. Command Line Interface: 

Command Line Interface (CLI) is an automated interface to facilitate accessing 
the enablers’ functionalities, in which a user can quickly and easily access 
enablers’ use cases. CLI includes simplified installation and commands, pre-
configured scripts for common use cases, and benchmarks to evaluate the end-
to-end workings of the whole pipeline, working as an integration test for the 
system.  

3.1. PRELIMINARY RESEARCH: EMOTION REPRESENTATION 
LEARNING AND EMOTION RECOGNITION 

A crucial step preceding the development of the ER tools is the preliminary research 
on emotion recognition that has been conducted to: 

- Select Machine and Deep Learning architectures, feature extraction methods, 
and representation learning techniques, including Self-Supervised Learning 
methods, to be included in the XR2Learn emotion recognition enablers. In recent 
decades, emotion recognition methods have evolved from classical Machine 
Learning methods to sophisticated Deep Learning topologies. The state-of-the-
art emotion recognition methods based on large models are more accurate and 
generalizable, allowing robust features extracted from raw data that can be 
transferred to various tasks. However, they generally require more 
computational resources and annotated data for training. Besides, the current 

 
5 https://redis.io/docs/interact/pubsub/  

https://redis.io/docs/interact/pubsub/
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landscape of emotion recognition is heavily based on raw facial expression data, 
which might be challenging to obtain with commercial XR equipment. Thus, the 
conducted research is focused on modalities going beyond facial expressions, 
which (i) have been presented in the XR2Learn proposal document (namely, 
speech, bio-measurements, and bodily cues) and (ii) can be used in the XR 
context (eye tracking). 

- Analyze the adequacy of existing open-source datasets for their use in the 
XR2Learn project for pre-training and fine-tuning Deep Learning Models. With 
the latest advancements in Deep Representation Learning, models trained on 
open-source datasets can be transferred to custom use cases. Nevertheless, 
various aspects should be considered, from dataset licenses to emotion 
elicitation protocols, before exploiting open-source data within the XR2Learn 
project context. 

- Highlight challenges on emotion recognition in XR settings. On the one hand, the 
XR environment and previously unseen level of immersion provide lots of 
opportunities to elicit and, hence, utilize user affective states for adaptive 
learning. However, multiple challenges can be faced when Deep Learning-based 
emotion recognition should be integrated into educational VR scenarios. These 
challenges range from the feasibility of capturing and using certain modalities 
to obtaining data on the required range of affective states (e.g. Theory of Flow 
annotations). 

Parts of the analysis conducted within this section have been presented as scientific 
peer-reviewed publications in international venues as follows:  

- Mousavi, Seyed Muhammad Hossein, and Khaertdinov, Bulat, et al. "Emotion 
Recognition in Adaptive Virtual Reality Settings: Challenges and Opportunities." 
The 25th International Conference on Mobile Human-Computer Interaction, 
Workshop on Advances of Mobile and Wearable Biometrics, 2023. 

3.1.1. Speech Emotion Recognition 

Speech is a fundamental channel of expressing and interpreting emotions, 
encompassing semantics, paralinguistic information, and prosodic features. Achieving 
robust speech emotion recognition (SER) performance can be possible when suitable 
representations are extracted. 

3.1.1.1. Speech Representations 

Approaches to SER can be categorized into two groups based on feature representation 
extraction, summarized in Figure 12. First, methods based on more conventional 
handcrafted feature extraction methods are still widely exploited in ER systems. For 
example, the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)6 is a 
classical method of capturing acoustic and paralinguistic information without semantic 
richness. Besides, various spectral representations (Figure 13), such as mel-scale 
spectrograms or Mel-frequency Cepstral Coefficients (MFCCs), that can be obtained 
from speech signals present a broader outlook on speech characteristics. These 
handcrafted representations can be used to train relatively lightweight Neural Network 
models of different architectures, such as Multilayer Perceptron (MLP), and 
Convolutional Neural Networks (CNNs).  

 
6 Eyben, Florian, et al. "The Geneva minimalistic acoustic parameter set (GeMAPS) for voice 
research and affective computing." IEEE Transactions on Affective Computing 7.2 (2015): 190-
202. 
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- Figure 12. Approaches to Speech Emotion 
Recognition. 

Another family of approaches directly processing raw audio signals, also known as large 
speech models (e.g., wav2vec2.07 and HuBERT8), have shown superior SER performance 
in recent years. Nonetheless, they require much more computing power, sophisticated 
approaches to pre-training, based on SSL frameworks, and large amounts of speech 
data available for pre-training. Fortunately, open-source versions of these models are 
available (e.g. via the PyTorch audio framework9), that have been pre-trained on large 
general-purpose datasets with human speech. These representations can be re-used 
to build task-specific emotion recognition models with SSL and/or subsequently 
incorporate supervised classifiers10. 

 

- Figure 13. Visualization of spectral representations. 
 

 

 
7 Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech 
representations." Advances in neural information processing systems 33 (2020): 12449-12460. 
8 Hsu, Wei-Ning, et al. "Hubert: Self-supervised speech representation learning by masked 
prediction of hidden units." IEEE/ACM Transactions on Audio, Speech, and Language Processing 
29 (2021): 3451-3460. 
9 https://pytorch.org/audio/stable/pipelines.html#module-torchaudio.pipelines  
10 Pepino, Leonardo, Pablo Riera, and Luciana Ferrer. "Emotion Recognition from Speech Using 
wav2vec 2.0 Embeddings." Proc. Interspeech 2021 (2021): 3400-3404. 

https://pytorch.org/audio/stable/pipelines.html#module-torchaudio.pipelines
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3.1.1.2. Open-source Datasets and Experimental Setup 

Before integrating models into the proposed tools described above (Section 3), we 
conducted a set of experiments validating the models from the literature on three 
widely used open-source datasets, namely IEMOCAP11, RAVDESS12, and K-EmoCon13. It 
is important to mention that all three datasets are available for non-commercial use 
and research purposes only. Besides, none of these datasets have been collected in XR 
environments. 

The IEMOCAP dataset, recorded with 10 actors (5 males, 5 females) in 5 sessions, 
contains more than 7,000 audio segments with an average length of approximately 8 
seconds. The dataset is typically used with 4 distinct emotions (anger, 
happiness/excitement, sadness, neutral). The distribution of classes is relatively 
balanced. Normally, the models are evaluated on the dataset in a leave-one-session-
out cross-validation protocol, where each session is used for testing purposes once 
and performance metrics are averaged over all 5 folds. The RAVDESS dataset (24 
actors: 12 males, 12 females) contains 8 emotions (neutral, calm, happy, sad, angry, 
fearful, disgust, surprised) with a dataset size of about 1400 samples.  For this dataset, 
we employ random hold-out sets (80% train / 10% validation / 10% test) based on the 
actors. The emotions presented in the IEMOCAP and RAVDESS datasets were played 
by actors in scripted and improvised discussions. These datasets also contain facial 
expression modality in addition to speech. 

The K-EmoCon dataset consists of untrimmed dialogues, including data from 32 
participants (20 male, 12 female) that can be processed into approximately 1,000 
samples of 10 seconds in length. The dataset contains different annotation types, 
including (i) a two-dimensional affective model with arousal and valence scores 
between 1 (very low) and 5 (very high); (ii) categorical emotional classes (cheerful, 
happy, angry, nervous, sad) each scored between 1 (very low) and 5 (very high); and (iii) 
Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP)14 where a single class from 
engagement related categories (boredom, confusion, delight, engaged concentration, 
frustration, surprise, or none) is selected. The latter annotation system, BROMP, is 
closely related to education scenarios and derived from the Theory of Flow, the model 
intended to be used in the XR2Learn project. However, the obtained BROMP 
annotations are severely imbalanced, as shown in Figure 14, which brings an additional 
challenge for models to classify these affective states. Apart from audio signals, this 
dataset also contains visual data and bio-measurement signals. To elicit the emotions 
above, the subjects (non-native English speakers) were asked to participate in debates 
on sensitive political topics in English. In turn, the emotion annotations were obtained 
via self and external assessment. For this dataset, the typical procedure is leave-one-
subject-out, where samples from each of the 32 subjects are subsequently used for 
model evaluation (test set). 

 
11 Busso, Carlos, et al. "IEMOCAP: Interactive emotional dyadic motion capture database." 
Language resources and evaluation 42 (2008): 335-359. 
12 Livingstone, Steven R., and Frank A. Russo. "The Ryerson Audio-Visual Database of Emotional 
Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North 
American English." PloS one 13.5 (2018): e0196391. 
13 Park, Cheul Young, et al. "K-EmoCon, a multimodal sensor dataset for continuous emotion 
recognition in naturalistic conversations." Scientific Data 7.1 (2020): 293. 
14 Ocumpaugh, Jaclyn. "Baker Rodrigo Ocumpaugh monitoring protocol (BROMP) 2.0 technical 
and training manual." New York, NY and Manila, Philippines: Teachers College, Columbia 
University and Ateneo Laboratory for the Learning Sciences 60 (2015). 
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- Figure 14. Distribution of annotations (adapted from 
the K-EmoCon dataset paper). 

 

In our preliminary research for Speech Emotion Recognition, we evaluated various 
Neural Network (Deep Learning) architectures on IEMOCAP, RAVDESS, and K-EmoCon 
using speech representations described in the previous section. Specifically, the input 
representations of speech and implemented models used in the experiments are 
described in Table 1. In particular, we implemented three methods based on 
handcrafted features, including MLP based on eGeMAPS low level descriptors and one-
dimensional CNNs processing spectral representations of speech. Finally, we also 
investigated two SSL architectures processing raw speech data. These models are two 
versions, base and large, of the widely used wav2vec 2.0 neural network. In our 
experiments, we used models that have been already pre-trained on large speech 
dataset, namely LibriSpeech15, and available as open-source via torchaudio package. 

 

 

 

 

 

 

 

 

 

 

 
15 Panayotov, Vassil, et al. "Librispeech: an asr corpus based on public domain audio books." 
2015 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 
2015. 
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- Table 1. Speech Input Data and Deep Learning 
Models 

Model 
No. 

Input Format  Deep Learning Model / 
Approach to Learning 

Description 

1 eGeMAPs 
(Functional) 

MLP The eGeMAPs functional features correspond to 88 
features related to acoustics computed for the 
whole input audio stream. These values are used as 
inputs for a fully connected Neural Network, or 
MLP, with 2 layers. 

2 Spectral 
(mel-scale 
spectrograms) 

CNN One-dimensional Convolutional Neural Network 
with three layers and a Linear Classifier applied to 
mel-scale spectrograms extracted from raw 
speech. 

3 Spectral 
(MFCC) 

CNN One-dimensional Convolutional Neural Network 
with three layers and a Linear Classifier applied to 
MFCCs extracted from raw speech. 

4 Raw Audio wav2vec2.0 base (SSL) 
+ pointwise CNN + 
linear classifier 

Apply the open-source base wav2vec 2.0 speech 
model pre-trained on LibriSpeech dataset using 
SSL to pre-processed speech. The obtained 
features are then passed to a pointwise CNN with a 
linear classifier. 

5 Raw Audio wav2vec2.0 large (SSL) 
+ pointwise CNN + 
linear classifier 

Apply the open-source large wav2vec 2.0 speech 
model pre-trained on the LibriSpeech dataset using 
SSL to pre-processed speech. The obtained 
features are then passed to a pointwise CNN a 
linear classifier. 

 

3.1.1.3. Evaluations 

We evaluated the proposed models on three datasets that we described earlier: 
IEMOCAP, RAVDESS and K-EmoCon. Table 2 presents the quantitative results of the 
conducted experiments. The metric used to assess the performance of models is the 
average (macro) F1-score (%).  

- Table 2. F1-scores (%) for the speech emotion 
recognition task. 

Model No. IEMOCAP RAVDESS K-EmoCon 
(arousal-valence)16 

K-EmoCon (BROMP) 

1 48.1 29.5 38.6 11.7 

2 52.09 30.7 41.61 11.6 

3 50.56 40.9 31.65 11.7 

4 60.65 70.4 34.2 11.7 

5 64.46 72.4 35.87 11.7 

 

As can be observed in Table 2, the largest model (model no.5, wav2vec 2.0 large) 
significantly outperforms all the other topologies on IEMOCAP and RAVDESS datasets, 
two datasets widely used in research on speech emotion recognition. Nevertheless, the 

 
16 The performance is averaged over two-class (high, low) arousal and valence classification 
scores. 
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performance on the K-EmoCon dataset (arousal-valence scales) is better for the model 
based on mel-scale spectrograms. Additionally, it is evident that all models perform 
remarkably low on BROMP annotations. Most probably, this issue arises due to the 
extremely unbalanced data. 

While the emotion recognition rate is a key factor for selecting an architecture, in real-
world inference settings, it is also important to consider other aspects related to model 
efficiency. While large speech models can significantly outperform other topologies, 
they are associated with higher costs and requirements for fine-tuning and higher 
latency during inference. In Table 3, the metrics related to computation costs and 
latency of the evaluated models are presented. 

 

- Table 3. Computation efficiency of the Deep 
Learning models. Training and inference time are 
presented for the RAVDESS dataset. The training 
time is reported for the Nvidia Titan V GPU. The 
inference time is reported for the CPU (Intel(R) 

Xeon(R) CPU E5-2620 v4 @ 2.10GHz). 

Model No. Number of parameters 
(millions) 

Training time per epoch17 
(seconds)  

Average inference time 
per instance (seconds) 

1 0.03 0.35 0.0042 

2 0.06 0.5 0.0051 

3 0.34 0.4 0.0047 

4 94.5  
(without pre-trained part: 

0.13) 

14.8 0.3 

5 315 
(without pre-trained part: 

0.17) 

30.9 0.575 

 

As anticipated, large speech models demand considerable computational resources. 
They present higher requirements to GPU resulting in training (or fine-tuning) times 
that are several orders of magnitude longer. They also exhibit slower inference 
compared to the models based on handcrafted features.  

3.1.1.4. Challenges and Limitations 

Based on the analysis of the literature and conducted experiments, the following 
challenges and limitations have been highlighted when operating with speech modality: 

- While speech contains rich information about human emotions, to the best of 
our knowledge, there are no datasets with speech collected in natural education 
settings. Furthermore, most of the datasets containing speech present sets of 
emotions that are not related to user engagement. In the conducted 
experiments, one dataset with education-related BROMP annotations have been 
used. Nevertheless, it has been found that regardless of applied methods, the 
emotion recognition performance is very low. This can be explained by the 
quality of collected data and annotations, i.e. emotion elicitation, annotation 

 
17 RAVDESS training set contains approximately 1200 samples. Thus, an epoch is one iteration 
of training through 1200 instances. 



 

30 
 

D3.2 - XR2Learn enablers 

procedures, and class-imbalance. Thus, this challenge can be addressed by a 
dedicated data collection pilot, or methodology to map standard models of 
emotion representation to education-related annotations (e.g. theory of flow). 

- The large speech models typically show remarkable performance compared to 
models based on handcrafted features. Nevertheless, fine-tuning such models 
is significantly more computationally expensive compared to other approaches. 
Besides, their latency is considerably higher compared to the methods based on 
handcrafted features. If required, the latency of the models can be lowered by 
using contemporary model compression techniques, such as quantization and 
knowledge distillation. Also, the deployment architecture for training and 
inference components can be modularized to deploy different components in 
distinct machines according to how much computational resources the 
component requires. 

3.1.2. Emotion Recognition through Bio-measurements 

Perceived emotions trigger physiological responses in the body, such as changes in 
heart rate, skin conductance, and respiration rate. Moreover, such changes can be 
measured by wearable physiological sensors that have become more accessible in 
recent years. Nevertheless, collecting some physiological responses can require 
expensive intrusive equipment and a complex environment for accurate data collection, 
which is not always feasible and can be challenging to integrate with commercial VR 
educational scenarios.  

Electrodermal activity (EDA) signals, also known as Galvanic Skin Response (GSR), are 
recorded by sensors that measure skin conductance changes, which can indicate 
emotional arousal levels. Heart rate variability is another source of information that 
can be used to reflect the changes in the affective state. In particular, an 
Electrocardiogram (ECG) is a robust heart rate monitor that requires connecting 
multiple electrodes to subjects' chests, which is hard to achieve beyond the laboratory 
environment. A less intrusive and more lightweight measurement of heart rate 
variability is Blood Volume Pulse (BVP).  

Skin temperature (SKT) is also used for affect recognition, although several factors 
could influence it. It typically is a weaker signal compared to EDA and BVP. Wearable 
devices, including commercial-grade and research-grade options such as smart 
watches, bracelets, and rings, can record EDA, BVP, and SKT data through integrated 
electrodes. The EDA, BVP, and SKT data are commonly used to predict emotional 
arousal levels, signaling the intensity of the experienced affective states, and detecting 
stress and excitement. We visualize examples of data recordings corresponding to EDA 
and BVP signal obtained from the WESAD dataset in Figure 15. 
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- Figure 15. Signal recordings from EDA and BVP 
sensors collected from one participant in the 

WESAD dataset. 
Unlike the other physiological sensors, Electroencephalography (EEG) signals can be 
used to evaluate two-dimensional affect recognition, i.e., both arousal and valence 
levels. However, EEG devices require complex installation and, ideally, laboratory 
settings to collect accurate data. 

3.1.2.1. Learning Representations from Bio-measurements 

In recent years, Self-Supervised Learning has been applied to emotion recognition to 
learn unimodal features from different modalities. Experiments conducted on various 
modalities, such as ECG data18, EDA, BVP, and SKT data19, show that unsupervised 
representation learning is a promising direction that allows Deep Learning models to 
learn robust unimodal representations from unlabeled data. Nevertheless, unlike in 
speech emotion recognition, there are no publicly available pre-trained models for 
these data modalities. Thus, the SSL frameworks should be tailored individually for 
bio-measurement data. 

3.1.2.2. Open-source Datasets and Experimental Setup 

In our preliminary experiments, we used WESAD20 and K-EmoCon datasets (introduced 
earlier for speech) that include bio-measurement data obtained via various wearable 
sensors. In particular, we focus on less intrusive sensors presented in these datasets 
that were installed in wristbands. The WESAD dataset is collected from 15 subjects (12 
males and 3 females), whereas the annotations are made based on the stimuli the 
subjects have received. Specifically, a three-class version of the dataset contains 
neutral, amusement, and stress classes. The elicitation materials were the Trier Social 

 
18 Sarkar, Pritam, and Ali Etemad. "Self-supervised ECG representation learning for emotion 
recognition." IEEE Transactions on Affective Computing 13.3 (2020): 1541-1554. 
19 Dissanayake, Vipula, et al. "Sigrep: Toward robust wearable emotion recognition with 
contrastive representation learning." IEEE Access 10 (2022): 18105-18120. 
20 Schmidt, Philip, et al. "Introducing wesad, a multimodal dataset for wearable stress and affect 
detection." Proceedings of the 20th ACM international conference on multimodal interaction. 
2018. 



 

32 
 

D3.2 - XR2Learn enablers 

Stress Test21 for the stress state, and video clips for the amusement state. The K-
EmoCon dataset has been previously discussed in the context of audio modality. Both 
datasets used Empatica E422 to collect EDA, SKT, and BVP data. As stated on the 
Empatica website, the E4 wristband is no longer available for purchase. 

In our experimentation, we have implemented 3 models, described in Table 4, for bio-
measurement data (EDA, BVP, SKT). All models are based on Convolutional Neural 
Networks, which are commonly used to process multivariate time-series data. 
Nevertheless, the difference between the proposed models resides in the methodology 
employed for their training. In particular, the first model is a CNN train from scratch in 
supervised settings, whereas the remaining models are first pre-trained using state-
of-the-art Self-Supervised Learning frameworks (SimCLR and VICReg) that we adapted 
to the problem of emotion recognition. 

- Table 4. Deep Learning Models for bio-measurement 
data. 

Model 
No. 

Input Format  Deep Learning Model / 
Approach to Learning 

Description 

1 Raw signals Supervised CNN Convolution Neural Network (CNN) with 3 layers 
and a fully connected classification layer. Applied 
to raw multi-channel bio-measurement signals. 
Each channel corresponds to a certain device (EDA, 
BVP, SKT). The signals are re-sampled to the same 
frequency, normalised to zero mean and unit 
variance per channel and segmented into 10-
second time intervals with a 5-second overlap. 

2 Raw signals SimCLR pre-training for 
CNN 

CNN architecture (same as in model 1), pre-trained 
with the SimCLR23 contrastive SSL framework. 

3 Raw signals VICReg pre-training for 
CNN 

CNN architecture (same as in model 1), pre-trained 
with the VICReg24 SSL framework. 

 

3.1.2.3. Evaluations 

The described models have been tested on two datasets and two protocols per 
dataset. Specifically, we used 3-class (stress/neutral/amused) and 2-class (stress/no-
stress) protocols from WESAD dataset to train out models and K-EmoCon dataset 
previously used for SER experiments. Table 5 presents the quantitative results of the 
conducted experiments. The metric used to assess the performance of models is the 
average (macro) F1-score.  

 

 

 
21 Kirschbaum, Clemens, Karl-Martin Pirke, and Dirk H. Hellhammer. "The ‘Trier Social Stress 
Test’–a tool for investigating psychobiological stress responses in a laboratory setting." 
Neuropsychobiology 28.1-2 (1993): 76-81. 
22 https://www.empatica.com/store/e4-wristband/  
23 Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." 
International conference on machine learning. PMLR, 2020. 
24 Bardes, Adrien, Jean Ponce, and Yann Lecun. "VICReg: Variance-Invariance-Covariance 
Regularization For Self-Supervised Learning." ICLR 2022-International Conference on Learning 
Representations. 2022. 

https://www.empatica.com/store/e4-wristband/
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- Table 5. F1-scores (%) for Emotion Recognition using 
bio-measurement signals. 

Model No WESAD  
(3-class) 

WESAD  
(stress / no-stress) 

K-EmoCon (arousal-
valence)25 

K-EmoCon  
(BROMP) 

1 69.1 89.4 41.6 11.9 

2 67.7  91.0 43.1 11.8 

3 67.4 90.1 39.98 11.7 

 

As can be seen, all implemented models show an impressive performance for 
distinguishing stress episodes in subjects on the WESAD dataset. Nevertheless, the 
performance drops significantly when a third amusement class is introduced. This 
could have happened due to a number of reasons. First, the authors of the WESAD 
dataset used stimuli for emotion elicitation and annotation. For example, to provoke 
emotion, an amusing video has been shown to the participants and the authors 
assumed that the subjects felt amused while watching the video. Another reason might 
be related to the fact that bio-measurements reflect changes in arousal level, whereas 
they are not  strong markers to estimate valence levels. To further illustrate this issue 
we visualize the representations that model 1 learnt for input data in two-dimensional 
space by using the t-SNE26 dimensionality reduction technique. The t-SNE projections 
are shown in Figure 16. As can be seen, the models struggle to distinguish between 
amusement and neutral (baseline) classes. 

 

- Figure 16. Representations of the instances in the 
WESAD dataset projected onto two-dimensional 
space with t-SNE. Each point corresponds to a 

separate bio-measurement recording. 
For the K-EmoCon dataset, the proposed models show the performance comparable 
to performance of speech-based models based on spectrograms. For the education 
related BROMP annotations, the proposed models also show significantly lower 
performance, due to the issue with extreme data imbalance.  

 
25 The performance is averaged over two-class (high, low) arousal and valence classification 
scores. 
26 Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of 
machine learning research 9.11 (2008). 
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In Table 6, the metrics related to computation costs and latency of the evaluated 
models are presented. As can be seen, the pre-training does not affect the inference 
time. However, more resources are needed for the pre-training stage itself. 

- Table 6. Computational efficiency of the Deep 
Learning models for emotion recognition using bio-

measurements. Training and inference time are 
presented for the WESAD dataset. For SSL models 
(2, 3), pt and ft refer to pre-training and fine-tuning 
stages. Inference times during pre-training are not 

applicable (N/A), as the inference is performed with 
the fine-tuned model. The training time is reported 

for Nvidia Quadro RTX-5000 GPU. The inference time 
is measured on CPU.  

Model No. Number of parameters for 
training (millions) 

Training time per epoch 
(seconds)  

Inference time per 
example (seconds) 

1 0.316 2 0.014 

2: pt 1.8 10 N/A 

2: ft 0.316 2 0.014 

3: pt 1.8 8 N/A 

3: ft 0.316 2 0.014 

 

3.1.2.4. Challenges and Limitations 

The following challenges and limitations were identified in the research phase with 
bio-measurement data: 

- One of the key technical challenges in developing emotion recognition systems 
using bio-measurements is due to the wide variety of devices available on the 
market. Each device generates input signals with unique characteristics and 
formats, which makes it difficult to develop a universal system. Unlike audio 
waveforms, bio-measurement signals are recorded using various physiological 
sensors with different frequencies and sensitivities, which are dependent on the 
device used for data collection. Furthermore, there is no industry-standard 
wearable device, which means that the developed components should be 
flexible enough to allow for the quick and straightforward development of add-
ons to process signals from different devices. 

- Most of the datasets present sets of emotions that are not related to user 
engagement. Whereas these datasets can be exploited to pre-train Deep 
Learning models, annotated data needs to be collected for model fine-tuning 
using emotion model engagement, such as the Theory of Flow. 

- Machine and Deep Learning models’ performance using bio-measurement 
signals might not be as accurate compared to the performance of models based 
on facial expressions and speech. This is due to the fact that such physiological 
responses, as EDA and BVP, have been suggested as a valuable physiological 
indicator mainly for depicting emotional arousal through various methods of 
emotion elicitation27 and might not reflect the valence dimension of emotions. 

 
27 Picard, Rosalind W., Szymon Fedor, and Yadid Ayzenberg. "Multiple arousal theory and daily-
life electrodermal activity asymmetry." Emotion review 8.1 (2016): 62-75. 
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In other words, these signals are not considered as a strong marker for 
identifying positivity or negativity of certain emotions, but only reflecting their 
intensity.  

- Emotion elicitation and data annotation are challenging aspects that should be 
carefully considered when building an emotion recognition system. As shown in 
the experiments with the WESAD dataset, this might have a significant impact 
on the quality of data and annotations. When developing a data collection tool, 
it is very important to carefully plan what emotions have to be elicited and how 
they can be annotated (e.g. self-annotation, external annotation) to reduce the 
number of incorrectly labeled instances. 

3.1.3. Emotion Recognition using Body Tracking 

Emotion recognition through body tracking and body motion, a pivotal area in affective 
computing, employs sophisticated algorithms and sensor technologies to decode non-
verbal emotional cues. Algorithms such as Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), eXtreme Gradient Boosting (XGBoost), and Long 
Short-Term Memory (LSTM) play a crucial role in processing data captured by motion 
capture sensors like Kinect28, Vicon29, and Intel RealSense30. These sensors are adept 
at recording detailed body movements for computational analysis. For instance, the 
study by Kleinsmith et al.31 exemplifies the use of body posture as a reliable indicator 
of emotional states. This technology's applications are vast, extending from virtual 
reality user experience enhancements to mental health care improvements, as 
explored in the work by Karg et al.32. Joint Angles, Joint Displacement, Joint Velocity 
and Acceleration, Spatial Position of Joints, Symmetry and Asymmetry in Movements, 
Sequential Patterns of Joint Movements, and Range of Motion are typically used for 
feature extraction purposes in emotion recognition from body motion33 34. The 
continuous evolution in this domain is set to significantly transform human-computer 
interaction, making it more intuitive and empathetic.  

3.1.3.1. Features and Classifiers 

Fusing statistical features extracted from the spatial domain, Fourier transform, 
wavelet transform, and Hilbert transform could provide acceptable results. Features 
such as mean, median, standard deviation, variance, skewness, kurtosis, min value, 
max value, sum value, elements, peaks, sum of peaks, and percentiles are mentionable 

 
28 https://learn.microsoft.com/en-us/azure/kinect-dk/windows-comparison  
29 https://www.vicon.com/  
30 https://www.intelrealsense.com/  

31 Kleinsmith, Andrea, P. Ravindra De Silva, and Nadia Bianchi-Berthouze. "Recognizing emotion 
from postures: Cross-cultural differences in user modeling." User Modeling 2005: 10th 

International Conference, UM 2005, Edinburgh, Scotland, UK, July 24-29, 2005. Proceedings 10. 
Springer Berlin Heidelberg, 2005. 

32 Karg, Michelle, et al. "Body movements for affective expression: A survey of automatic 
recognition and generation." IEEE Transactions on Affective Computing 4.4 (2013): 341-359. 

33 Ahmed, Ferdous, ASM Hossain Bari, and Marina L. Gavrilova. "Emotion recognition from body 
movement." IEEE Access 8 (2019): 11761-11781. 

34 Roether, Claire Louise. The Expression of Emotions through Full-body Movement: Features 
and Asymmetry. Diss. 2010. 

https://learn.microsoft.com/en-us/azure/kinect-dk/windows-comparison
https://www.vicon.com/
https://www.intelrealsense.com/
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as effective. For this type of feature extraction, LSTM35, 1-D CNN36, Gradient Boosting, 
XGBoost, and Decision Tree classifiers return satisfactory results. It has been reported 
that additionally applying feature selection by Principal Component Analysis (PCA), 
Lasso Regularization, Variance Threshold, F-test, Tree-based Feature Selection, 
Neighborhood Components Analysis (NCA), and feature importance by eXplainable 
Artificial Intelligence (XAI) algorithms such as SHapley Additive exPlanations (SHAP) 
could remove outliers and improve the accuracy. However, the XAI approaches are 
more complex and costly. 

3.1.3.2. Open-source Datasets  

It is important to mention that the datasets available in open-source contain a more 
extensive set of body keypoints, whereas the commercial XR environment allows to 
track a limited set of markers. Nevertheless, for the proof of concept, we will use the 
full set of keypoints in the subsequent experiments. 

In our preliminary experiments, we used three motion capture datasets, starting with 
the Xia37 dataset. The Xia dataset comprises approximately 11 minutes of motion data, 
equivalent to 79,829 frames (572 samples) in BioVision Hierarchy (BVH38) format and 
38 joints. The motion data was captured using a Vicon optical motion capture system, 
employing eighteen 120 Hz cameras. The dataset includes a wide range of human 
actions such as walking, running, jumping, kicking, punching, and transitions between 
these behaviors. Each action is represented in eight distinctive styles: neutral, proud, 
angry, depressed, strutting, childlike, old, and sexy. All joint angles in the dataset, 
except for the root joint, are converted to Cartesian parameters using the exponential 
map parameterization. This ensures proper manipulation of the joint-angle quantities 
essential for style translation.  Figure 17 depicts some samples generated by us from 
the Xia dataset in various actions and emotions using BVHView39 software in Windows 
OS.  

 

 
35 da Silva, Rogério E., Jan Ondrej, and Aljosa Smolic. "Using LSTM for Automatic Classification 
of Human Motion Capture Data." VISIGRAPP (1: GRAPP). 2019. 

36 Li, Hai, Hwa Jen Yap, and Selina Khoo. "Motion classification and features recognition of a 
traditional Chinese sport (Baduanjin) using sampled-based methods." Applied Sciences 11.16 
(2021): 7630. 

37 Xia, Shihong, et al. "Realtime style transfer for unlabeled heterogeneous human motion." ACM 
Transactions on Graphics (TOG) 34.4 (2015): 1-10. 

38 https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html  
39 https://github.com/orangeduck/BVHView  

https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html
https://github.com/orangeduck/BVHView
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- Figure 17. Generated visual motion caption samples 
from Xia dataset in different actions and emotions 

Edinburgh University published multiple motion capture datasets40 in different actions 
and emotions namely, edinlocomotion, edinkinect, edinxsens, edinmisc, edinpunching, 
and edinterrain which here, we use edinlocomotion41. This is a database containing long 
clips of locomotion data, including running, walking, jogging, and various sidestepping 
motions. It contains around 20 minutes of raw data and is not segmented into 
individual strides. Each data point in the dataset is enhanced with additional scalar 
control signals, including the turning speed, forward velocity, and sideways velocity of 
the body. These signals provide more context to the motion data and allow for more 
detailed analysis and application. Every frame of a sequence in the dataset represents 
21 joint positions in the local Cartesian space, with the origin at the hip of the character. 
However, for our experiment, we used the 38-joint version of it (47 samples) which 
was retargeted by Holden (2016)42. Figure 18 illustrates the body hierarchy of one of 
the walking samples from this dataset in the BVHHacker tool43. 

 

 
40 de la Cruz, Vladimir. Human motion convolutional autoencoders using different rotation 
representations. Diss. Concordia University, 2019. 

41 Komura, Taku, et al. "A recurrent variational autoencoder for human motion synthesis." The 
28th British Machine Vision Conference. 2017. 

42 Holden, Daniel, Jun Saito, and Taku Komura. "A deep learning framework for character motion 
synthesis and editing." ACM Transactions on Graphics (TOG) 35.4 (2016): 1-11. 

43 https://www.bvhacker.com/ 
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- Figure 18. A walking body hierarchy sample from 
edinlocomotion dataset in 

- BVHHacker Tool 

The BFA dataset was introduced by Aberman (2020)44 for two purposes; retargeting 
and motion style transfer. Retargeting means changing the number of positions of 
joints from one character to another and motion style transfer means transferring the 
style of different subjects’ actions to each other. For instance, to transfer “angry 
walking” style from one subject to another person’s body motion. In this work, the 
motion style transfer dataset was used. This dataset consisted of 33 long motion 
capture clips in 16 styles and emotions. Figure 19 represents the t-SNE plot of these 
styles and emotions (adopted from their paper). Table 7 represents our experimental 
results on the mentioned three datasets using different extract features. Five other 
body motion datasets are considered for the future experiments which are MPI45, 
CMU46,  100 Style Dataset47, KDAEE48, and Bandai-Namco Research Motion dataset49. 

 

- Figure 19. t-SNE plot of BFA dataset 

 

 

 
44 Aberman, Kfir, et al. "Unpaired motion style transfer from video to animation." ACM 
Transactions on Graphics (TOG) 39.4 (2020): 64-1. 

45 Volkova, Ekaterina, et al. "The MPI emotional body expressions database for narrative 
scenarios." PloS one 9.12 (2014): e113647. 

46 De la Torre, Fernando, et al. "Guide to the carnegie mellon university multimodal activity 
(cmu-mmac) database." (2009). 

47 Mason, Ian, Sebastian Starke, and Taku Komura. "Real-time style modelling of human 
locomotion via feature-wise transformations and local motion phases." Proceedings of the ACM 
on Computer Graphics and Interactive Techniques 5.1 (2022): 1-18. 
48 Zhang, Mingming, et al. "Kinematic dataset of actors expressing emotions." Scientific data 7.1 
(2020): 292. 

49 Kobayashi, Makito, et al. "Motion Capture Dataset for Practical Use of AI-based Motion Editing 
and Stylization." arXiv preprint arXiv:2306.08861 (2023). 
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- Table 7. Experiment accuracy results on three 
mentioned datasets (best results are reported) 

Dataset Data Classifier Train Test Features Classes 

Xia Feature 
Extracted 

Gradient 
Boosting 

100 % 66 % Statistical features from 
the Spatial and Wavelet 
domain 

4 emotions of Angry, 
Depressed, Neutral, 
and Proud 

Raw Gradient 
Boosting 

100 % 89 % Interpolated raw data 
(equal frames) 

Edin 
Locomotion 

  Decision 
Tree 

100 % 61 % Statistical features from 
the Spatial, Fourier, Short 
Time Fourier Transform,  
Wavelet, and Hilbert 
transform 

7 actions of Jog, Jog 
side step, Run, Run 
side step, Transition, 
Walk, Walk side step 

Raw Gradient 
Boosting 

100 % 77 % Interpolated raw data 
(equal frames) 

BFA 

  

Feature 
Extracted 

Gradient 
Boosting 

100 % 80 % Statistical features from 
the Spatial and Wavelet 
domain 

5 emotions of Angry, 
Depressed, Neutral, 
Proud, and Happy 

Raw Gradient 
Boosting 

100 % 80 % Interpolated raw data 
(equal frames) 

 

 

- Challenges and 
Limitations 
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Based on our research, a few challenges and limitations50 51 52 have been found. Some 
of these challenges are summarized below:  

● Complexity of Emotion Representation: Human emotions are complex and 
multidimensional. They are not only expressed through body movements but 
also through facial expressions, tone of voice, and context. This complexity 
makes it difficult to accurately interpret emotions based solely on body motion 
data. 

● Individual Variability: There is significant variation in how different individuals 
express emotions through their body movements. What might be a sign of 
happiness in one person could be a sign of discomfort in another. This individual 
variability requires personalized models, which can be challenging to develop 
and scale. 

● Cultural Differences: Body language can vary significantly across cultures. For 
instance, gestures or postures that indicate a certain emotion in one culture 
might have a completely different meaning in another. This poses a challenge 
for creating universally applicable emotion recognition systems. 

● Real-Time Processing Constraints: Processing body motion data in real-time for 
immediate emotion recognition can be computationally demanding, especially 
when dealing with high-resolution data or complex algorithms. This poses a 
challenge for implementation in real-world, resource-constrained environments. 

● Contextual Relevance: Emotions are often context-dependent. Without 
understanding the context in which a body movement occurs, it can be difficult 
to accurately interpret the emotion it represents. This limitation can lead to 
misinterpretations in emotion recognition. 

● Integration with Other Modalities: To improve accuracy, emotion recognition 
systems often need to integrate body motion data with other modalities like 
voice. However, effectively integrating and synchronizing these different data 
types can be technically challenging. 

Also, some limitations are: 

● Data Quality and Availability: High-quality, comprehensive datasets are crucial 
for training accurate models. However, collecting such datasets is challenging 
due to privacy concerns, the need for a diverse range of participants, and the 
complexity of accurately annotating emotional states. 

● Additionally, emotion recognition through body tracking faces two main 
challenges: there's not enough data available, particularly in educational 
settings, and for emotions tied to the concept of flow. Collecting detailed and 
varied data in schools is difficult due to privacy concerns and practical issues, 
while the unique and personal nature of flow states complicates data collection. 

 
50 Sapiński, Tomasz, et al. "Emotion recognition from skeletal movements." Entropy 21.7 (2019): 
646. 

51 Riemer, Hila, et al. "Emotion and motion: Toward emotion recognition based on standing and 
walking." Plos one 18.9 (2023): e0290564. 

52 Ahmed, Ferdous, ASM Hossain Bari, and Marina L. Gavrilova. "Emotion recognition from body 
movement." IEEE Access 8 (2019): 11761-11781. 
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These limitations prevent the technology's ability to accurately identify emotions 
in these specific contexts. 

● Sensor Limitations and Accuracy: The accuracy of body tracking technologies, 
such as motion capture systems or wearable sensors, can vary. Factors like 
lighting conditions, sensor placement, and environmental interference can affect 
the quality of the data collected, leading to less accurate emotion recognition. 

● Ethical and Privacy Concerns: The intrinsic privacy and ethical issues associated 
with monitoring and analyzing body movements, particularly in sensitive or 
private settings. 

● Lack of Standardized Benchmarks: The absence of standardized benchmarks 
and evaluation metrics in the field, which hampers the comparison of different 
approaches and the measurement of progress. 

3.2. TRAINING TOOLS 

3.2.1. Technical Documentation 

3.2.1.1. Description 

Training tools involve Enablers 2, 3, and 4 with related components, a total of five tools, 
for pre-training and fine-tuning models used in XR2Learn. Each tool is a modularized 
component with an isolated environment and dependencies that can be used 
separately, in combination, or as an end-to-end system (together with the Command-
Line Interface – CLI).   

The Training tools’ architecture was designed to deploy each modality separately, e.g., 
audio and bio measurements (BM) modalities, to better manage and isolate the 
different dependencies per modality. Each component is deployed using Docker to 
ensure easy-to-use components, reproducible development and deployment 
environments, and consistent results. Thus, the Training tools support cross-platform 
use, i.e., Windows, Linux and macOS.  

Pre-processing: Pre-process raw data into an organized time window of data and 
labels to be used by the other components. 

Handcrafted Features Extraction: Extracts features derived from the raw data type’s 
properties instead of using Machine Learning for feature extraction. This component 
can be considered as part of Enabler 2 or 3 depending on the use-case. Specifically, 
generated handcrafted features can be used as inputs for both SSL (Enabler 2) and 
Supervised Training (Enabler 4). In other words, our architecture allows a user to decide 
whether they would like to pre-train the encoder with SSL or use it as a final 
representation for Supervised Learning. 

Self-Supervised Learning (SSL) Training (pre-train): Pre-train an encoder (Enabler 2), 
with no use of labels. 

Features Extraction: Uses an encoder to generate features (Enabler 3). 

Supervised Learning Training (fine-tuning): Trains a classification model (Enabler 4) 
utilizing labels. 
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Figure 20 below depicts a diagram of the five components from the Training domain 
and their communication. Outputs produced by each component in the Training domain 
can be accessed by a user directly, and used as input by Inference components.  

 

- Figure 20. Training domain architecture with its 
components connections. 

3.2.1.2. Prerequisites 

The Training Tools support the three main Operational Systems (OS): Linux, macOS, 
and Windows, as well as CPU and GPU use. 

The two pre-requisites are:  

- Docker53 installed (or Docker-Nvidia54 if GPU use is required) 

- Python 3.1055 installed 

3.2.1.3. Installation 

 
53 https://docs.docker.com/engine/install/  
54 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html  
55 https://www.python.org/downloads/  

https://docs.docker.com/engine/install/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://www.python.org/downloads/
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1. Download the latest version of the code at:  

https://github.com/XR2Learn/Enablers-2-4-Training/tags  

2. Unzip the file 

3. Navigate to the root directory of the downloaded project, and from the root 
repository, run the command to build the docker images 

a. docker compose build 

4. If using GPU, also build the docker images for GPU 

a. docker compose -f docker-compose.yml -f docker-compose-gpu.yml build 
(for Windows systems)  

b. ./compose-gpu.sh build (for Unix based systems, i.e., Linux and MacOS)  

3.2.1.4. Basic User manual 

The enablers were designed to be used with Enablers-CLI, a command-line interface 
that simplifies the use of enablers, so the easiest way to access the Enablers’ 
functionalities is by using Enablers-CLI. Please refer to Section 3.5 for information on 
how to use CLI. However, if changing or expanding the enablers’ functionalities is 
required, it is possible to access each component using docker commands, as 
exemplified below. Thus, the instructions described below are focused on running the 
enablers for a development environment.  

A “configuration.json” file is required to provide the enablers with the necessary 
specifications for running. A default version of “configuration.json” is provided and can 
be changed by the user.  

1. Run a docker image: 

a. docker compose run --rm <service-name> 

Note: Service names can be found in the “docker-compose.yml” file in the project’s root 
folder. Each modality, i.e., audio, bio-measurements (bm), body movements, are 
deployed in separated docker containers and their service name follow the structure:  

1. pre-processing-<modality> 
2. handcrafted-features-generation-<modality> 
3. ssl-<modality> 
4. ssl-features-generation-<modality> 
5. ed-training-<modality> 

There is an additional script to run all the docker images from a given modality, which 
uses the available ‘configuration.json’ file:  

1. For Unix-based OS, MacOS and Linux 
a. ./run_all_dockers.sh 

2. For Windows:  
a. ./run_all_dockers.ps1 

Additional Useful Commands:  

https://github.com/XR2Learn/Enablers-2-4-Training/tags
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1. Build a specific docker image 
a. docker compose build <service-name> 

2. Run a specific docker image 
a. docker compose run --rm <service-name> 

3. Run a specific docker image providing Environment Variables in the format 
KEY=VALUE: 

a. KEY=VALUE docker compose run --rm <service-name> 

4. Run a specific docker image with shell entry point 
a. docker compose run --rm <service-name> \bin\bash 

All the outputs produced by any component in the Training domain are saved and can 
be accessed in the folder  ./outputs.  

3.2.1.5. Open-source Code 

The Training tools can be found in the project’s GitHub repository at: 

- https://github.com/XR2Learn/Enablers-2-4-Training  

LICENSE 

The Training tools code is shared under a dual-licensing model. For non-commercial 
use, it is released under the MIT56 open-source license. A commercial license is 
required for commercial use. 

The handcrafted features extraction components for the audio modality is shared for 
non-commercial use only, to comply with OpenSMILE57 license.  

More details on the End User License Agreement (EULA) can be found be found at: 

https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/LICENSE    

Available versions 

- Table 8. Training tools enablers and components 
released versions and date 

Version Release Date 

v0.1.0 2023-10-19 

v0.2.0 2023-11-14 

v0.3.0 2023-12-06 

v0.3.1 2024-01-19 

v0.3.2 2024-02-15 

 

All the released versions can be accessed at: https://github.com/XR2Learn/Enablers-
2-4-Training/tags  

 
56 https://opensource.org/license/mit/  
57 https://github.com/audeering/opensmile-python/tree/main  

https://github.com/XR2Learn/Enablers-2-4-Training
https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/LICENSE
https://github.com/XR2Learn/Enablers-2-4-Training/tags
https://github.com/XR2Learn/Enablers-2-4-Training/tags
https://opensource.org/license/mit/
https://github.com/audeering/opensmile-python/tree/main
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Table 8 lists the Training tools released versions with date. A description of the main 
changes in the project’s versions can be found at: 
https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/CHANGELOG.md  

 

3.2.2. Enabler 2: Emotion Representation Learning Tool 

3.2.2.1. Description 

Enabler 2 includes the components for pre-processing, handcrafted feature extraction, 
and the tool for pre-training Deep Learning emotion recognition models. As stated 
before, emotion representations generated by pre-training models will be used for 
supervised training, and the different modalities for each component are deployed 
separately.  

The pre-processing component is responsible for processing the raw input files into 
organized, structured data, generating CSV files in which each row represents an 
example of the given data with the corresponding label. This component is also 
responsible for splitting the input data into train, validation and test sets in a 
consistent approach to prevent data leakage across the different enablers’ pipelines. 

The handcrafted features component is responsible for extracting handcrafted 
features, i.e., numerical representation derived from the raw input data’s properties. 
This component uses the input data already pre-processed and split into train, 
validation and test sets. For the audio modality, MFCCs and eGEMAPS handcrafted 
feature extraction are supported.  

The SSL component aims to pre-train Deep Learning encoders for emotion recognition 
and learn representations that can be later used in Enablers 3 and 4. The current 
pipeline supports the SimCLR contrastive learning framework58 utilizing augmentations 
of input data. This framework and augmentations can be applied on top of raw speech 
signals as well as handcrafted features (e.g., spectrograms for the audio modality) to 
pre-train architectures of deep learning models previously described in Section 3.1.1.2 
(Table 1). This SSL pipeline allows users to pre-train Deep Learning architectures of 
their choice, taking into account their computational capabilities. Meanwhile, users can 
choose not to pre-train their own model and fine-tune the open-source pre-trained 
models (currently, base and large versions of wav2vec 2.0 are supported) within 
Enabler 4. In this case, as discussed in Section 3.1.1.3 (Table 3), more powerful 
equipment (GPUs) are needed. In the second sub-phase of Task 3.2, we plan to upgrade 
the current pre-training pipelines and extend them to other modalities (e.g., bio-
measurements). 

3.2.2.2. Basic User manual 

There are two approaches to run Enabler 2 directly: using a docker image or a local 
run.  

1. For Docker running: 
a. Running with CPU 

i. docker compose run --rm ssl-<modality> (for running with CPU) 
b. Running with GPU 

 
58 Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." 
International conference on machine learning. PMLR, 2020. 

https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/CHANGELOG.md
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i. ./compose-gpu.sh run --rm ssl-<modality> (for Unix based OS, i.e. 
MacOS and Linux) 

ii. docker compose -f docker-compose.yml -f docker-compose-gpu.yml run 

–-rm ssl-<modality> (for Windows)  
2. For local running:  

a. Download the specific component from the Training tools repository (e.g., 
SSL_Training/SSL_Audio_Modality)  

b. Prepare the virtual environment (Create and activate virtual environment 
with venv). 

i. python -m venv ./venv 

ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt (for running with CPU) 
ii. pip install -r requirements-gpu.txt (for running with CUDA) 

d. Change the “configuration.json” file according to the desired use-case 
e. Run the script 

i. python pre-train.py 

(Optional) Running Handcrafted Feature Extraction component can also be done locally 
or using a docker image. 

1. For Docker running: 

docker compose run --rm handcrafted-features-generation-<modality> 

     2.  For local running:  

a. Download the specific component from the Training tools repository (e.g., 
Handcrafted_Features_Extraction/Handcrafted_Features_Extraction_Audio_m
odality)  

b. Prepare the virtual environment (Create and activate virtual environment with 
venv). 

i. python -m venv ./venv 
ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt 

d. Change the “configuration.json” file according to the desired use-case 
e. Run the script 

i. python generate_features.py 

3.2.3. Enabler 3: Tools for Using Emotion Representations 

3.2.3.1. Description 

Enabler 3 involves the tool for using pre-trained models in order to generate 
representations (feature extraction). This component uses a pre-trained model, trained 
by the Enabler 2 component or a customized pre-trained model provided by the user, 
to compute features for a given modality.  

The functionality of this component is a crucial part of deploying an Inference system 
(Section 3.3), i.e., utilizing the pre-trained models to generate feature representations 
of the input data. These representations can later be used to train and utilize an 
emotion classification model within the supervised training component (Enabler 4; 
Section 3.2.4) and the Inference tool (Section 3.3). Additionally, users that are only 
interested in obtaining the feature representations for their custom dataset can use 
this component as a standalone module.  
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As mentioned previously in Section 3.2.1.1, Handcrafted Feature Extraction component 
can also be considered part of Enabler 3 in the case where these representations are 
preferred to be used for Supervised Training (Enabler 4) skipping SSL. A description of 
this component and how to use it can be found in Section 3.2.2. 

3.2.3.2. Basic User manual 

There are two approaches to run Enabler 3 directly: using a docker image or a local 
run.  

1. For Docker running 
a. Running with CPU 

i. docker compose run --rm ssl-features-generation-<modality> 

b. Running with GPU 
i. ./compose-gpu.sh run --rm ssl-features-generation-<modality> (for 

Unix based OS, i.e. MacOS and Linux) 
ii. docker compose -f docker-compose.yml -f docker-compose-gpu.yml run 

–-rm ssl-features-generation-<modality> (for Windows) 
2. For local running:  

a. Download the specific component from the Training tools repository (e.g., 
SSL_Features_Extraction/SSL_Features_Extraction_Audio_Modality)  

b. Prepare the virtual environment (Create and activate the virtual 
environment with venv). 
i. python -m venv ./venv 
ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt (for running with CPU) 
ii. pip install -r requirements-gpu.txt (for running with CUDA) 

d. Change the “configuration.json” file according to use-case 
e. Run the script 

i. python generate_features.py 

3.2.4. Enabler 4: Unimodal Emotion Classification Tools 

3.2.4.1. Description 

Enabler 4 is a tool for fine-tuning Deep Learning Emotion Recognition models through 
supervised training with labeled data. This component can receive the emotion 
representations generated by Enabler 3 as input. During supervised training of the 
emotion classification model, this component can utilize the Encoder, i.e., the pre-
trained model generated by Enabler 2 (Section 3.2.2) with frozen weights or perform 
further fine-tuning of the pre-trained model, according to the user’s configuration. 
Alternatively, Enabler 4 can also receive pre-processed data (output of the Pre-
processing component, Section 3.2.2) as input and implement the entire pipeline to 
train both the encoder and the classification model. This is helpful for users who want 
to use Enabler 4 as a standalone tool. 

For the supervised training phase, this component employs a linear classification on 
top of the encoder or feature representations, in which the user can set 
hyperparameters and other options through a configuration file, such as the number 
of epochs, batch size, learning rate, and optimizer algorithm.  

3.2.4.2. Basic User manual 

There are two approaches to run Enabler 4 directly: using a docker image or a local 
run.  
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1. For Docker running 
a. Running with CPU 

i. docker compose run --rm ed-training-<modality> 

b. Running with GPU 
i. ./compose-gpu.sh run --rm ed-training-<modality> (for Unix based 

OS, i.e. MacOS and Linux) 
ii. docker compose -f docker-compose.yml -f docker-compose-gpu.yml run 

–-rm ed-training-<modality> (for Windows) 
2. For local running:  

a. Download the specific component from the Training tools repository (e.g., 
Supervised_Training/Supervised_Audio_Modality) 

b. Prepare the virtual environment (Create and activate the virtual 
environment with venv). 
i. python -m venv ./venv 
ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt (for running with CPU) 
ii. pip install -r requirements-gpu.txt (for running with CUDA) 

d. Change the “configuration.json” file according to use-case 
e. Run the script 

i. python train.py 

3.3. INFERENCE TOOLS 

3.3.1. Technical Documentation 

3.3.1.1. Description 

These tools are designed for the unimodal and multimodal emotion classification and 
evaluation in XR2Learn. This set of tools includes Emotion Classification (per modality), 
Multimodal Fusion and Evaluation components. Each tool is a modularized component 
with an isolated environment and dependencies that can be used separately, in 
combination, or as an end-to-end system (together with the Command-Line Interface 
– CLI).   

Each component is deployed using Docker to ensure easy-to-use components, 
reproducible development and deployment environments, and consistent results. 

Emotion Classification: a component to recognize emotions. Each modality has a 
separated emotion classification component.   

Multimodal Fusion: a component to execute a decision-level emotion detection 
multimodal fusion, i.e., to compute the combination of emotions from different 
modalities.  

Evaluation: a component to evaluate a uni/multimodal emotion detection model 
according to different evaluation metrics.  

Figure 21 below depicts the Inference components' overall architecture and 
communication. As can be observed, Inference components utilize outputs produced 
by Training components.  
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- Figure 21. An overview of the Inference domain 
architecture with its components connections. 

3.3.1.2. Prerequisites 

The Inference Tools support the three main Operational Systems (OS): Linux, MacOS, 
and Windows. 

The two pre-requisites are:  

- Docker59 installed 
- Python 3.1060 installed 

3.3.1.3. Installation 

1. Download the latest version of the code at:  
a. https://github.com/XR2Learn/Enabler-5-Inference/tags  

2. Unzip the file 
3. Navigate to the root directory of the downloaded project, and from the root 

repository, run the command to build the docker images 

a. docker compose build 

3.3.1.4. Basic User Manual 

The enablers were designed to be used with Enablers-CLI, a command-line interface 
that simplifies the use of enablers, so the easiest way to access the enablers’ 
functionalities is by using Enablers-CLI. Please refer to Section 3.5 for information on 
how to use CLI. 

 
59 https://docs.docker.com/engine/install/  
60 https://www.python.org/downloads/  

https://github.com/XR2Learn/Enabler-5-Inference/tags
https://docs.docker.com/engine/install/
https://www.python.org/downloads/
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However, if changing or expanding the enablers’ functionalities is required, it is possible 
to access each component using docker commands, as exemplified below. Thus, the 
instructions described below are focused on running the enablers for a development 
environment.  

A “configuration.json” file is required to provide the enablers with the necessary 
specifications for running. A default version of “configuration.json” is provided and can 
be changed by the user.  

Run a docker image: 

b. docker compose run --rm <service-name> 

Note 1: Service names can be found in the “docker-compose.yml” file in the project’s root 
folder. Each modality, i.e., audio, bio-measurements (bm), body movements, are 
deployed in separated docker containers and their service name follow the structure:  

1. emotion-classification-<modality> 
2. fusion-layer 
3. ed-evaluation 

Note 2: Some additional services can be found in the Inference domain “docker-
compose.yml” file, namely:  

- redis 
- personalisation-tool 
- demo-ui  

These services are present in the Inference domain to facilitate development and are 
explained in detail in Section 3.4, Personalization Tool.  

There is an additional script to run all the docker images from a given modality, which 
will use the available ‘configuration.json’ file:  

For Unix-based OS, MacOS and Linux 

b. ./run_all_dockers.sh 

For Windows:  

c. ./run_all_dockers.ps1 

Additional Useful Commands:  

1. Build a specific docker image 
a. docker compose build <service-name> 

2. Run a specific docker image 
a. docker compose run --rm <service-name> 

3. Run a specific docker image providing Environment Variables in the format 
KEY=VALUE: 

a. KEY=VALUE docker compose run --rm <service-name> 
4. Run a specific docker image with shell entry point 

a. docker compose run --rm <service-name> \bin\bash 
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All the outputs produced by any component in the Inference domain are saved and can 
be accessed in the folder  ./outputs.  

3.3.1.5. Open-source Code 

The Inference tools can be found in the project’s GitHub repository at: 

- https://github.com/XR2Learn/Enabler-5-Inference  

LICENSE 

The Inference tools code is shared under a dual-licensing model. For non-commercial 
use, it is released under the MIT61 open-source license. A commercial license is required 
for commercial use. 

More details on the End User License Agreement (EULA) can be found at: 

https://github.com/XR2Learn/Enabler-5-Inference/blob/master/LICENSE     

Available versions 

- Table 9. Inference tools enablers and components 
released versions and date. 

Version Release Date 

v0.1.0 2023-10-27 

v0.1.1 2023-12-06 

v0.2.0 2024-01-09 

v0.3.0 2024-01-19 

v0.3.1 2024-02-15 

All the released versions can be accessed at: https://github.com/XR2Learn/Enabler-
5-Inference/tags  

Table 9 lists the Inference tools released versions with date. A description of the 
main changes in the project’s versions can be found at: 
https://github.com/XR2Learn/Enabler-5-Inference/blob/master/CHANGELOG.md  

3.3.2. Enabler 5: Multimodal Fusion Tools 

3.3.2.1. Description 

This enabler combines identified emotions from multiple modalities into a final 
predicted emotion. The current version implements a decision-level multimodal fusion 
type using a majority voting fusion schema at the class probability level.   

This enabler's inputs are the predicted emotions from each modality (as a .csv file with 
.npy file paths containing the predicted emotion label array).  

For the generated output, Enabler 5 supports two different formats: 

 
61 https://opensource.org/license/mit/  

https://github.com/XR2Learn/Enabler-5-Inference
https://github.com/XR2Learn/Enabler-5-Inference/blob/master/LICENSE
https://github.com/XR2Learn/Enabler-5-Inference/tags
https://github.com/XR2Learn/Enabler-5-Inference/tags
https://github.com/XR2Learn/Enabler-5-Inference/blob/master/CHANGELOG.md
https://opensource.org/license/mit/
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1. A .csv file with the final fusion predicted emotions that can be found in 
/outputs/predictions.csv (currently default behavior) 

2. Enabler 5 can also behave as a publisher component, publishing the fusion 
predicted emotion according to the Publisher/Subscriber messaging protocol.  

To set up the multimodal fusion layer as a publisher, add "publisher: true" under the 
key "inference_config". By setting the publisher configuration as true, this component 
can communicate with Personalization tool components using a publisher/subscriber 
messaging protocol as described in the following section, Personalization Tool.  

3.3.2.2. Basic User Manual 

There are two approaches to run Enabler 5 directly: using a docker image or a local 
run.  

1. For Docker running: 
a. docker compose run --rm fusion-layer 

2. For local running:  
a. Download the specific component from the Inference tools repository 

(e.g., Multimodal_Fusion/Multimodal_Fusion_Layer)  
b. Prepare the virtual environment (Create and activate virtual environment 

with venv). 
i. python -m venv ./venv 
ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt 

d. Change the “configuration.json” file according to the desired use-case 
3. Run the script 

a. python predict.py 

3.3.3. Emotion Classification and Model Evaluation 

3.3.3.1. Description 

The emotion classification component utilizes the fine-tuning model’s weights trained 
by the supervised training component (Enabler 4; Section 3.2.4) in the Training domain 
to identify the emotion from extracted features. It also can use the pre-trained encoder 
generated in the Training domain (Enabler 2; Section 3.2.2) combined with the fine-
tuned model to predict emotions from pre-processed data.   

Each modality of this component is deployed separately in different Docker container 
images to allow a separate environment for each modality and dependencies, thus 
facilitating the implementation and extension of additional modalities.  

The Model Evaluation component utilizes the final predictions generated by the 
multimodal fusion component, or a given unimodality prediction, to evaluate the 
combined pipeline performance according to different evaluation metrics, for instance, 
accuracy, recall, precision, and confusion matrix.  

3.3.3.2. Basic User Manual 

There are two approaches to run an Emotion Classification component directly: using 
a docker image or a local run.  

1. For Docker running: 
a. docker compose run --rm emotion-classification-<modality> 

2. For local running:  
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a. Download the specific component from the Inference tools repository 
(e.g., Emotion_Classification/Emotion_Classification_Audio_Modality)  

b. Prepare the virtual environment (Create and activate virtual environment 
with venv). 

i. python -m venv ./venv 
ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt 

d. Change the “configuration.json” file according to the desired use-case 
e. Run the script 

i. python predict.py 

Similarly to other components, there are two approaches to run the Emotion Detection 
Evaluation component directly: using a docker image or a local run.  

1. For Docker running: 
a. docker compose run --rm ed-evaluation 

2. For local running:  
a. Download the specific component from the Inference tools repository 

(e.g., ED_Evaluation/ED_Evaluation) 
b. Prepare the virtual environment (Create and activate virtual environment 

with venv). 
i. python -m venv ./venv 
ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt 

d. Change the “configuration.json” file according to the desired use-case 
e. Run the script 

i. python evaluate.py 

3.4. PERSONALIZATION TOOL 

3.4.1. Technical Documentation 

3.4.1.1. Description 

The Personalization Tool utilizes the user’s predicted emotions as the output of the 
Training and Inference domain, together with contextual information, e.g., a user and 
activity levels, to provide personalized suggestions on the recommended activity level 
for the user in educational XR applications. 

The Personalization Tool exploits the Publisher/Subscriber messaging protocol 
implemented using Redis to provide asynchronous, real-time communication between 
the Personalization Tool, Inference domain and an XR educational software 
implemented using Unity.  

A web-based DemoUI is also provided as a graphic interface for better visualizing the 
personalization tool functionality and how it communicates with the other domain’s 
components, i.e., multimodal fusion layer and Unity application.   

Figure 22 below depicts the Personalization Tool architecture with its different 
components and communication with Training and Inference components, represented 
by blue (Training) and green (Inference) colors.  
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- Figure 22. Overview of the Personalization tool’s 
architecture with its components communicating 
with the Training (blue) and the Inference (green) 

components. 

3.4.1.2. Prerequisites 

Personalization Tool supports the three main Operational Systems (OS): Linux, MacOS, 
and Windows. 

The two prerequisites are:  

1. Docker62 installed 
2. Python 3.1063 installed 

3.4.1.3. Installation 

1. Download the latest version of the code at:  
a. https://github.com/XR2Learn/Enabler-6-Personalisation-Tool  

2. Unzip the file 
3. Navigate to the root directory of the downloaded project, and from the root 

repository, run the command to build the docker images 
a. docker compose build 

For installing locally: 

1. Personalization Tool 
a. Navigate to the directory Personalisation_Tool 
b. Prepare the virtual environment (Create and activate virtual environment 

with venv). 
i. python -m venv ./venv 

ii. source ./venv/bin/activate 

 
62 https://docs.docker.com/engine/install/  
63 https://www.python.org/downloads/  

https://github.com/XR2Learn/Enabler-6-Personalisation-Tool
https://docs.docker.com/engine/install/
https://www.python.org/downloads/
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c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt  

2. DemoUI 
a. Navigate to the directory DemoUI 
b. Prepare the virtual environment (Create and activate virtual environment 

with venv). 
i. python -m venv ./venv 

ii. source ./venv/bin/activate 

c. Install the requirements within the virtual environment  
i. pip install -r requirements.txt  

3.4.1.4. Basic User Manual 

Personalization Tool can be used as a standalone application or with Enablers-CLI, a 
command-line interface to simplify the use of Enablers. The easiest way to access the 
Personalization Tool’s functionalities is by using Enablers-CLI. Please refer to Section 
3.5 for information on how to use CLI. 

However, if changing or expanding the Personalization tool’s functionalities is required, 
it is possible to access each component using docker commands, as exemplified below. 
Thus, the instructions described below are focused on a development environment.  

A “configuration.json” file is required to provide the components with the necessary 
specifications for running. A default version of “configuration.json” is provided and can 
be changed by the user. 

To run all the docker images and access the DemoUI:  

1. Run the command:  
a. docker compose up -d 

2. Go to the URL to access the DemoUI:  
a. http://127.0.0.1:8000/ 

3.4.1.5. Open-source code 

Personalization Tool can be found in the project’s GitHub repository at: 

- https://github.com/XR2Learn/Enabler-6-Personalisation-Tool  

LICENSE 

The Personalization tool code is shared under a dual-licensing model. For non-
commercial use, it is released under the MIT64 open-source license. A commercial 
license is required for commercial use. 

Fine-tuned models created using the RAVDESS dataset are shared under the CC BY-
NC-SA 4.0 license to comply with the RAVDESS license, as the models are derivative 
works from this dataset. 

More details on the End User License Agreement (EULA) can be found at: 

https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/LICENSE      

 
64 https://opensource.org/license/mit/  

http://127.0.0.1:8000/
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/LICENSE
https://opensource.org/license/mit/
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Available versions 

- Table 10. Personalization tool components released 
versions and date. 

Version Release Date 

v0.1.0 2023-10-31 

v0.1.1 2023-12-06 

v0.2.0 2024-01-19 

v0.2.1 2024-02-15 

 

All the released versions can be accessed at: https://github.com/XR2Learn/Enabler-
6-Personalisation-Tool/tags  

Table 10 lists the Personalization tool released versions with date. A description of 
the main changes in the project’s versions can be found at: 
https://github.com/XR2Learn/Enabler-6-Personalisation-
Tool/blob/master/CHANGELOG.md  

3.4.2. Enabler 6: Personalization tool 

3.4.2.1. Description 

This tool is intended to recommend adjusting learning material difficulty based on the 
current learning application level, the user's skill level and current emotions. It uses 
components from Training Tools and Inference Tools to process the input data, identify 
the user’s emotions and calculate the suggested next learning activity level.  

As mentioned earlier, this component implements a publisher/subscriber messaging 
protocol using Redis. Thus, it subscribes to channels to get information from Inference 
components (multimodal fusion layer) and an XR Unity application. While it also 
publishes information (the suggested activity level) to a different channel so other 
components can access and process this information.  

3.4.2.2. Basic User Manual 

There are two approaches to run the Personalization tool directly: using docker images 
or a local run. Because this component implements a publisher/subscriber using Redis, 
it needs to have an instance of Redis service running so the personalization tool can 
publish and subscribe to channels (or topics). A simulate_input_output.py script is 
provided so a user can visualize (on a shell terminal) the Personalization tool 
functionality.   

1. For local running 
a. Run an instance of Redis: 

i. docker compose up redis -d 

b. Run the Python script (from inside the virtual environment): 
i. python personalisation_tool/suggest_activity_level.py  

c. Run (in a different terminal window or tab): 
i. python personalisation_tool/simulate_input_output.py 

2. For Docker running 

https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/tags
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/tags
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/CHANGELOG.md
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a. Run the command below (this command will automatically run an 
instance of Redis, so personalization tool service can run as well): 
i. docker compose run --rm personalisation-tool  

b. Run (in a different terminal window or tab): 
i. python personalisation_tool/simulate_input_output.py 

To stop Redis service:  

 docker compose down  

3.4.3. Demo UI 

3.4.3.1. Description 

A web-based application (using Flask65) that uses websockets (socketio) to connect 
Javascript with the Flask server. The Flask server runs a background thread that 
publishes the websocket events into Redis channels and subscribes to channels as 
well, implementing a publisher/subscriber messaging protocol. The Flask server 
behaves as an API gateway that translates Redis protocol into websocket protocol. In 
simpler terms, DemoUI subscribes to messaging channels (or topics) to display the 
communication messages between Enabler 6 (Personalization tool; Section 3.4.2), 
Inference tools and XR Unity application, providing a graphic interface for better 
visualizing the Personalization Tool functionalities.   

Figure 23 below depicts the architecture overview of the communication between the 
DemoUI with other components. DemoUI displays messages published by the Enabler 
6 - Personalization Tool, Inference tool and the XR Unity application. While also displays 
the output of Enabler 6 - Personalization tool processing which will be eventually used 
by the XR Unity application.   

 

 

 
65 https://flask.palletsprojects.com/en/3.0.x/  

https://flask.palletsprojects.com/en/3.0.x/
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- Figure 23. Architecture overview of Demo UI 
communicating with other components: Enabler 6, 

Inference and XR Unity application.  

 

3.4.3.2. Basic User Manual 

DemoUI is a Flask web-based application and can be run locally or using a Docker 
image.  

1. Running with Docker 
a. docker compose run --rm demo-ui 

b. Go to the URL http://127.0.0.1:8000/ to access the DemoUI 
2. Running locally 

a. Stat Redis server 
i. docker compose up redis -d 

b. From inside the virtual environment you prepared in Section 3.4.1.3, run 
the command: 
i. python web_app.py 

When you access the DemoUI, there are two different demos you can use, as shown 
by Figure 24 below.  

 

- Figure 24. DemoUI screenshot 

1. Personalization Tool v1: DemoUI simulates the input from the Inference (emotion 
detection) and the XR Unity app. DemoUI displays the processed output from 
Enabler-6. 

 

- Figure 25. DemoUI (version 1) screenshot, with Unity 
and Emotion Detection simulation 

2. Personalization Tool v2: DemoUI simulates the input from the XR Unity app but 
receives the input from the Inference directly. DemoUI displays the processed 
output from Enabler-6. 

http://127.0.0.1:8000/
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- Figure 26. DemoUI (version 2) screenshot, with Unity 
simulation 

 

The different versions of DemoUI showcase the Personalization Tool functionalities 
regardless of how many components are already deployed and connected with the 
whole system, demonstrating the robustness and flexibility of Enablers’ modularized 
architecture.  

3.5. COMMAND LINE INTERFACE (CLI) 

3.5.1. Technical Documentation 

3.5.1.1. Description 

Enablers-CLI (Command Line Interface) was designed to facilitate the use of XR2Learn 
training, inference and personalization tools, i.e., Enablers 2-6 and their components. 
To access the Enablers' functionalities through CLI, you need two elements: 

1. CLI commands and options 
2. A configuration.json file (you can provide a JSON configuration file path as an 

option to the CLI command, if you do not provide a JSON configuration file path, 
the default file is ./configuration.json).  

A default configuration.json file is provided and it can be changed according to the use-
case.  

Figure 27 below depicts the Enablers and Enabler-CLI components and their 
communication. All components’ outputs can be accessed through CLI at /output 
folder.  
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- Figure 27. Overview of Enabler-CLI’s architecture 
serving as a user entrypoint for accessing Training, 

Inference, Personalization tools and DemoUI 
functionalities. 

3.5.1.2. Prerequisites 

- Docker66 installed (or Docker-Nvidia67 if GPU use is required) 

- Python 3.1068 installed 

3.5.1.3. Installation 

1. Create virtual environment 
a. python -m venv ./venv 

b. source ./venv/bin/activate 

2. Navigate to the XR2Learn-CLI directory 
3. Install XR2Learn-CLI 

a. pip install -e . (There is a full stop in the end of the command) 

3.5.1.4. Basic User Manual 

The general command format to use XR2Learn-CLI is: 

python xr2learn_enablers_cli/xr2learn_enablers.py [OPTIONS] [COMMAND] 
[OPTIONS] 

For help with the options and commands, access a list of arguments and their 
description with:  

 python xr2learn_enablers_cli/xr2learn_enablers.py --help 

Command examples:  

1. Training: 

 
66 https://docs.docker.com/engine/install/  
67 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html  
68 https://www.python.org/downloads/  

https://docs.docker.com/engine/install/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://www.python.org/downloads/
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a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id 
model_001 train --dataset ravdess --features_type ssl --ssl_pre_train 
encoder_fe --ed_training true 

2. Inference (Predict): 
a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id 

model_001 predict --dataset ravdess 

3. Inference (Multimodal Fusion): 
a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id 

model_001 multimodal --dataset ravdess 

4. Inference (Evaluation): 
a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id 

model_001 evaluate --dataset ravdess 

5. Start Web-based DemoUI (for personalisation tool user interface): 
a. python xr2learn_enablers_cli/xr2learn_enablers.py run_personalisation 

Go to the URL  http://127.0.0.1:8080  to access the DemoUI 

6. Stop Web-based DemoUI (for personalisation tool user interface): 
a. python xr2learn_enablers_cli/xr2learn_enablers.py stop-demo-ui 

GPU 

To use GPU, include an option with value true `--gpu true` before the command. 

Example: 

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id model_001 --gpu true 
train --dataset ravdess --features_type ssl --ssl_pre_train encoder_fe --ed_training 
true 

 

Benchmarks 

XR2Learn-CLI also includes pre-configured benchmarks, which represent use cases on 
the enablers functionalities and serve as integration tests for the end-to-end system 
formed by CLI and Enablers 2-5.  

Some use cases included in the benchmarks are end-to-end systems for the audio 
modality using different representations of speech, for example spectrals, 
paralinguistic and transformer-based features.  

 

1. Run benchmarks on Unix based OS: 

   `./run_benchmarks.sh` 

 

2. Run benchmarks using GPU: 

   `GPU=true ./run_benchmarks.sh` 

 

3.5.1.5. Open-source Code 

The Training tool can be found in the project’s GitHub repository at 
https://github.com/XR2Learn/Enablers-CLI  

http://127.0.0.1:8080/
https://github.com/XR2Learn/Enablers-CLI
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LICENSE 

The XR2Learn-CLI code is shared under a dual-licensing model. For non-commercial 
use, it is released under the MIT69 open-source license. A commercial license is 
required for commercial use. 

More details on the End User License Agreement (EULA) can be found at: 

 https://github.com/XR2Learn/Enablers-CLI/blob/master/LICENSE   

Available versions 

- Table 11. Command line interface (CLI) released 
versions and date. 

Version Released Date 

v0.1.0 2023-11-14 

v0.1.1 2023-11-28 

v0.1.2 2023-12-07 

v0.2.0 2024-01-09 

v0.3.0 2024-01-11 

v0.4.0 2024-01-19 

v0.4.1 2024-02-15 

 

Compatibility 

CLI v0.1.x is compatible with: 

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0 
● XR2Learn Inference v.0.1.X 

CLI v0.2.0 is compatible with: 

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0 
● XR2Learn Inference v.0.2.X 

CLI v0.3.0 is compatible with: 

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0 
● XR2Learn Inference v.0.2.X 
● XR2Learn Personalisation v.0.1.X 

CLI v0.4.X is compatible with: 

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0 
● XR2Learn Inference v.0.2.X, v.0.3.0 

 
69 https://opensource.org/license/mit/  

https://github.com/XR2Learn/Enablers-CLI/blob/master/LICENSE
https://opensource.org/license/mit/
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● XR2Learn Personalisation v.0.1.X, v.0.2.0 

All the released versions can be accessed at: https://github.com/XR2Learn/Enablers-
CLI/tags  

Table 11 lists the  Command line interface (CLI) released versions and date. A 
description of the main changes in the project’s versions can be found at: 
https://github.com/XR2Learn/Enablers-CLI/blob/master/CHANGELOG.md    

https://github.com/XR2Learn/Enablers-CLI/tags
https://github.com/XR2Learn/Enablers-CLI/tags
https://github.com/XR2Learn/Enablers-CLI/blob/master/CHANGELOG.md
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4.  DATA ACQUISITION 

The performance of Machine and Deep Learning models heavily depend on the quality 
of data used for training and evaluation. Furthermore, whereas Self-Supervised 
Learning can be effectively used to learn latent representations of different types of 
data, annotations are crucial for supervised learning and/or fine-tuning these 
representations and mapping them to outputs the models are intended to recognize.  

In Section 3.1, we presented the preliminary research on emotion recognition 
conducted with open-source data containing speech, bio-measurements and body 
tracking. According to the analysis conducted, we identified a set of modality-specific 
and common challenges and limitations arising when developing emotion recognition 
models. In particular, the issues related to the open available datasets can be briefly 
summarized as follows: 

● Emotion elicitation and data annotation are challenging aspects requiring 
personalized approaches based on the use case. First of all, there is a lack of 
available data that have been collected in educational settings. Furthermore, 
the existing datasets do not utilize emotional models related to education, such 
as the theory of flow, for annotations. Nevertheless, our enablers require 
annotated data for training classifiers using engagement-related metrics in order 
to allow personalization in educational settings. Besides, the experiments on 
open-source datasets have shown that not all emotion elicitation and 
annotation strategies are effective enough to provide accurately labeled data.  

● As a result of the wide range of sensors and devices that can be used to record 
bio-measurements and the different methods of recording them, there is no 
standard format for storing bio-measurements. Therefore, creating a single data 
processing system that can handle data from multiple sources is challenging. 

● Datasets based on body tracking data contain rich information regarding 
multiple key points in human bodies. Nevertheless, commercial VR equipment 
allows tracking fewer bodily cues, namely controllers and headset positions. 

The identified problems make it feasible to only rely partially on open datasets for 
building models within Enablers 2-6. Thus, a dedicated data collection tool is needed 
to overcome these limitations and collect data suitable for training and utilizing models 
in the implemented enablers. 

4.1. MAGIC XROOM: DATA COLLECTION TOOL 

4.1.1. Technical Documentation 

4.1.1.1. Description 

The Magic XRoom is a Virtual Reality (VR) application developed in the framework of 
Task 3.2 to elicit specific emotions and gather data from external sensors through a 
set of scenarios. The application allows the user to experience four different scenarios 
composed of increasingly difficult tasks that require various skills to complete within 
a time limit. 
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The data collected with the Magic XRoom is organized, annotated and written to CSV 
files to facilitate its analysis. The sensors compatible with the Magic XRoom are the 
following: 

● Virtual Reality headset and controllers (mandatory) 

○ Collect position and rotation. 

● Shimmer 3 GSR+ device (optional) 

○ Collect position, rotation, acceleration, galvanic skin response (GSR, EDA), 
photoplethysmography (PPG, BVP), and heart rate (generated from the 
PPG data). 

● Lip and Eye tracking devices (optional) 

○ Collect eyes and lip features. 
 

4.1.1.2. Prerequisites 

The Magic XRoom is compatible only with Microsoft Windows 10 (or higher) x64 
systems. 

The minimum requirements in terms of hardware sensors are a Virtual Reality headset 
and Virtual Reality controllers. For this the software required is: 

● SteamVR (downloaded with Steam) 

● VR headset linking/streaming software, i.e. 

○ VIVE Focus 3 requires VIVE Business Streaming; 

○ Oculus Quest requires the Oculus Desktop App. 
 

4.1.1.3. Installation 

Depending on which external sensors will be used during the data collection, additional 
software must be installed and configured prior to launching the Magic XRoom 
application. 

To use a Shimmer 3 GSR+ device: 

● No additional software is required, but the sensor must be configured with the 
LogAndStream firmware; 

● Bluetooth 5.1+ availability required; 

● The Shimmer sensor must be paired with the computer before starting the 
application. 

Please refer to the official documentation70 for a detailed explanation of successfully 
setting up and pairing a Shimmer GSR+ device.  

To use face/eye tracking: 

 
70 https://shimmersensing.com/wp-
content/docs/support/documentation/GSR_User_Guide_rev1.13.pdf  

https://shimmersensing.com/wp-content/docs/support/documentation/GSR_User_Guide_rev1.13.pdf
https://shimmersensing.com/wp-content/docs/support/documentation/GSR_User_Guide_rev1.13.pdf
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● SRanipal runtime (included in VIVE Console for SteamVR on Steam); 

● The computer and the VR hardware must be connected to the same 5GHz WiFi 
network. The Windows mobile hotspot has shown promising results during 
testing when a WiFi network is unavailable or restricted. 
 

4.1.1.4. Basic User Manual 

The actions mapped to the VIVE Focus 3 controllers are the following (mirrored on the 
left controller): 

 

- Figure 28. Magic Xroom handheld controllers actions 
and buttons. 

 

The following are the recommended steps to successfully launch and use the Magic 
XRoom with a VIVE Focus 3. Due to the nature of VR hardware/software and their 
environments, alternative methods might work but it is up to the user to choose 
which to follow and ensure the software works as intended. 

Note: software versions shown in images might differ 

1. Download the required software and setup the hardware 

a. Link the VR headset and controllers, pair the Shimmer sensor, connect 
to a strong WiFi if eye/face tracking is enabled 

2. Launch VIVE Streaming Business 
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- Figure 29. VIVE Business Streaming starting screen. 
3. Launch VIVE SRanipal (Steam version) if eye/face tracking is enabled (it 

launches automatically at point 5. but this step ensures the correct version is 
used in case multiple versions are installed on the computer) 

a. Default install directory is 
<steam install directory>\steamapps\common\VIVEDriver\App\SRanipal 

b. When successfully connected with the eye tracking accessory the tray 
icon should change color (same for mouth tracking). 

 

 

- Figure 30. Representation of icon colors change indicating the use 
of eye tracking accessory. 

 

Note: In the new versions of the software, the icon turns blue when connected, instead 
of green. 

4. Configure the user settings if necessary (explained further down in this 
chapter) 

5. Launch the Magic XRoom executable (SteamVR starts automatically) 

At this point the user should be within the virtual world of the Magic XRoom. 

In order to start the data collection one last step is required: 

 

- Figure 31. Magic Xroom sensors panel and data 
collection start button 

The red button shown in the above picture is used to start/stop the data collection. 
The panel above it shows the current state of the data collection [ Stopped / Running 
] and the current state of the Shimmer device [ Disconnected / Connecting / 
Connected / Streaming / Inactive ]. If the Shimmer sensor is used, it’s important to 
wait until it shows a Connected state while it’s connecting to the PC before starting 
the data collection and wait for it to turn into the Streaming state, otherwise no data 
will be collected for this sensor. 
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It is possible to work on multiple sessions without restarting the application by 
starting/stopping the data collection. Each time a new data collection is started a 
unique set of files is generated. 

 

The Magic XRoom application can be configured with an external file to 
enable/disable some features or to tweak parameters related to the data collection. 

The configuration file can be found in a subfolder of the directory of the executable: 
<Magic Xroom directory>\xr2learn-magicxroom_Data\StreamingAssets\UserSettings.xml 

For all sensors that require samplingRate or samplingBufferSize, to calculate the 
delay ∆t in [s] between each write operation for a specific sensor use the following 
formula: 

𝛥𝑡 =
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒
 

Higher values will impact less on performance but will result in more data being lost 
in case of abrupt interrupts in the data collection. 

Example: with a samplingBufferSize of 50 and a samplingRate of 10Hz the resulting 
delay will be 5s, meaning that at most 5s of data might be lost in case of unexpected 
errors or problems with the application/hardware/connection. 

The UserSettings.xml file contents are the following: 

● keyboard 
○ enableShortcuts [true/false] => enables/disables the following keyboard 

shortcuts (the application window must be focused to receive keyboard 
inputs): 

■ F => manually shows the Feedback Board 
■ D => toggles (start/stop) the data collection 

● dataCollection 
○ autoStart [true/false] => enables/disables the automatic start of the 

data collection when the application starts. 
○ outputPath [Windows compatible directory] => specifies the location 

where the data collection files will be generated. If left empty the 
default location is the same as the executable file. Ensure read/write 
operations are allowed for the current user 

● vr 
○ config 
○ samplingRate [integer] => the frequency in [Hz] at which the application 

will sample data from the VR headset and controllers 
○ samplingBufferSize [integer] => the number of samples buffered before 

writing to file 
● shimmer 

○ enabled [true/false] => enable/disable the Shimmer sensor data 
collection 

○ deviceName [any] => the Shimmer device internal name 
○ config 

■ heartbeatsToAverage [integer] => the number of heartbeat inputs 
used to calculate an average. Higher values tend to generate 
better results but sometimes break due to the volatility of the 
Bluetooth communication, i.e. if the value is set to 10 and one of 
the 10 inputs is corrupted or invalid, the overall average will be 
invalid for the next 10 calculations. 
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■ trainingPeriodPPG [integer] => the delay in [s] before the PPG 
signal is able to calculate a heartbeat 

■ samplingRate [integer] => the frequency in [Hz] at which the 
application will sample data from the Shimmer sensor 

■ samplingBufferSize3 [integer] => the number of samples buffered 
before writing to file. 

○ sensors 
■ enableAccelerator [true/false] => enables/disables the Shimmer 

internal accelerator sensor 
■ enableGSR [true/false] => enables/disables the Shimmer internal 

GSR sensor 
■ enablePPG [true/false] => enables/disables the Shimmer internal 

PPG sensor 
● eyeTracking 

○ enabled [true/false] => enables disables eye tracking 
○ config 

■ samplingRate [integer] => the frequency in [Hz] at which the 
application will sample data from the eye tracking sensor 

■ samplingBufferSize [integer] => the number of samples buffered 
before writing to file. 

● faceTracking 
○ enabled [true/false] => enables disables face tracking 
○ config 

■ samplingRate [integer] => the frequency in [Hz] at which the 
application will sample data from the face tracking sensor 

■ samplingBufferSize [integer] => the number of samples buffered 
before writing to file. 

● feedback 
○ enabled [true/false] => enables disables the feedback feature 
○ afterScenario [true/false] => show the feedback panel at the end of a 

scenario 
○ afterLevel [true/false] => show the feedback panel at the end of each 

level 

Note that in case the UserSettings.xml file is not found in the specified directory 
or in case of any erroneous or missing data, the application will use any or all the 
default values shown in the below image and in the original file provided with the 
executable. 

It is advised to modify the UserSettings.xml file and disable any sensors not in use 
to avoid unnecessary burden on the application. 
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- Figure 32. UserSettings.xml file with the supported 
values. 

 

The output of the Magic XRoom is a set of files containing the data collected by the 
sensors enabled prior to launching the application. 

Each of the enabled sensors will generate a comma-separated values (CSV) file 
sharing a unique identifier for the session, using the following naming convention: 

data_collection_<session ID>_<sensor type>.csv 

The session ID is generated as a number referring to the number of ticks since 
midnight 01.01.0001. Each tick represents 100 nanoseconds and to retrieve the 
corresponding date, input the number in an epoch converter (compatible with C# 
DateTime). 

VR 

data_collection_<session ID>_VR.csv 

Contains the data collected from the Virtual Reality Headset and Controllers. 
The columns represent the position and rotation of the headset and controllers: 

● timestamp => application timestamp 
● head_pos_x => headset absolute position x axis 
● head_pos_y => headset absolute position y axis 
● head_pos_z => headset absolute position z axis 
● head_rot_x => headset absolute rotation x (quaternion) 
● head_rot_y => headset absolute rotation y (quaternion) 
● head_rot_z => headset absolute rotation z (quaternion) 
● head_rot_w => headset absolute rotation w (quaternion) 
● lcontroller_pos_x => left controller absolute position x axis 
● lcontroller_pos_y => left controller absolute position y axis 
● lcontroller_pos_z => left controller absolute position z axis 
● lcontroller_rot_x => left controller absolute rotation x (quaternion) 
● lcontroller_rot_y => left controller absolute rotation y (quaternion) 
● lcontroller_rot_z => left controller absolute rotation z (quaternion) 
● lcontroller_rot_w => left controller absolute rotation w (quaternion) 
● rcontroller_pos_x => right controller absolute position x axis 
● rcontroller_pos_y => right controller absolute position y axis 
● rcontroller_pos_z => right controller absolute position z axis 
● rcontroller_rot_x => right controller absolute rotation x (quaternion) 
● rcontroller_rot_y => right controller absolute rotation y (quaternion) 
● rcontroller_rot_z => right controller absolute rotation z (quaternion) 
● rcontroller_rot_w => right controller absolute rotation w (quaternion) 

Shimmer 

data_collection_<session ID>_SHIMMER.csv 

Contains the data collected from the Shimmer device. 
The columns represent the values captured by the Shimmer sensors 

● timestamp => application timestamp 
● int_timestamp => Shimmer internal timestamp 
● accel_x => Shimmer accelerator x axis 
● accel_y => Shimmer accelerator y axis 
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● accel_z => Shimmer accelerator z axis 
● gsr => Shimmer Galvanic Skin Response (GSR) sensor 
● ppg => Photoplethysmograph (PPG) sensor 
● hr => heart rate computed from the PPG data 

Eye Tracking 

data_collection_<session ID>_EYE.csv 

Contains the data collected from the Eye Tracking device (vectors are right-handed). 
The columns represent the gaze, pupil and position of each eye 

● timestamp => application timestamp 
● int_timestamp => Eye Tracking device internal timestamp 
● left_gaze_origin_x => left eye x cornea center relative to each lens center 

[mm] 
● left_gaze_origin_y => left eye y cornea center relative to each lens center 

[mm] 
● left_gaze_origin_z => left eye z cornea center relative to each lens center 

[mm] 
● left_gaze_dir_norm_x => left eye gaze x direction normalized [0,1] 
● left_gaze_dir_norm_y => left eye gaze y direction normalized [0,1] 
● left_gaze_dir_norm_z => left eye gaze z direction normalized [0,1] 
● left_pupil_diameter => left eye pupil diameter in [mm] 
● left_eye_openness => left eye openness (0 closed, 1 open) 
● left_pos_norm_x => normalized left eye pupil x pos relative to lenses (0.5,0.5 

is center) 
● left_pos_norm_y => normalized left eye pupil y pos relative to lenses (0.5,0.5 

is center) 
● right_gaze_origin_x => right eye x cornea center relative to each lens center 

[mm] 
● right_gaze_origin_y => right eye y cornea center relative to each lens center 

[mm] 
● right_gaze_origin_z => right eye z cornea center relative to each lens center 

[mm] 
● right_gaze_dir_norm_x => right eye gaze x direction normalized [0,1] 
● right_gaze_dir_norm_y => right eye gaze y direction normalized [0,1] 
● right_gaze_dir_norm_z => right eye gaze z direction normalized [0,1] 
● right_pupil_diameter => right eye pupil diameter in [mm] 
● right_eye_openness => right openness (0 closed, 1 open) 
● right_pos_norm_x => normalized right eye pupil x pos relative to lenses (0.5,0.5 

is center) 
● right_pos_norm_y => normalized right eye pupil y pos relative to lenses (0.5,0.5 

is center) 
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- Figure 33. Representation of normalized gaze 
direction vectors. 

 

Face Tracking 

data_collection_<session ID>_FACE.csv 

Contains the data collected from the Face Tracking device (vectors are right-handed). 
The columns represent 27 facial points/features and how much these points are 
influencing the resulting facial expression (some are self-explanatory) 

● timestamp => application timestamp 
● int_timestamp => Face Tracking device internal timestamp 
● none => no difference compared to the default shape 
● jaw_forward => jaw position on the forward axis 
● jaw_right => jaw position on the right side of the horizontal axis 
● jaw_left => jaw position on the left side of the horizontal axis 
● jaw_open => jaw openness 
● mouth_ape_shape => mouth aperture shape 
● mouth_o_shape => mouth O shape (i.e. while making an “O” sound) 
● mouth_pout => mouth pouting shape 
● mouth_lower_right => mouth lower right shift 
● mouth_lower_left => mouth lower left shift 
● mouth_smile_right => mouth smile shape right side 
● mouth_smile_left => mouth smile shape left side 
● mouth_sad_right => mouth sad shape right side 
● mouth_sad_left => mouth sad shape left side 
● cheek_puff_right => cheek puff shape right side 
● cheek_puff_left => cheek puff shape left side 
● mouth_lower_inside => mouth inside lower shape 
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● mouth_upper_inside => mouth inside upper shape 
● mouth_lower_overlay => mouth inside lower overlay 
● mouth_upper_overlay => mouth inside upper overlay 
● check_suck => cheek “suck” expression 
● mouth_lower_right_down => mouth lower right down shift 
● mouth_lower_left_down => mouth lower left down shift 
● mouth_upper_right_up => mouth upper right up shift 
● mouth_upper_left_up => mouth upper left up shift 
● mouth_philtrum_right => mouth philtrum right shape 
● mouth_philtrum_left => mouth philtrum left shape 

Progression Events 

data_collection_<session ID>_PROGRESS_EVENT.csv 

Contains the events representing the user interaction with the environment and the 
scenarios. The columns represent the event type and the information relative to that 
event 

● timestamp => application timestamp 
● event_type => event type 
● info => information relative to the event 

The events generated fall in the following categories: 

● Scenario => a scenario can either be started manually by the user, or is ended 
by completing all the levels or teleporting outside the scenario area. The info 
column represents the name of the scenario. 

○ SCENARIO_STARTED => a scenario is manually started 
○ SCENARIO_ENDED => a scenario is ended, either by competition or by 

leaving the scenario area 
● Level => a scenario is composed of one or more levels. A level can be started, 

completed or failed. The info column represents the level difficulty as a number 
depending on the specific scenario. 

○ LEVEL_STARTED => a level is started 
○ LEVEL_FAILED => a level is failed 
○ LEVEL_COMPLETED => a level is completed successfully 

● Teleport => the user uses a teleport feature to enter or exit a scenario area. The 
info column represents the name of the scenario. 

○ TELEPORT_IN => the user was outside a scenario area and has teleported 
inside a scenario area 

○ TELEPORT_OUT => the user was inside a scenario area and has teleported 
outside a scenario area 

● Feedback => the user can provide feedback on his/her emotional state in the 
latest scenario or level. The info column represents the time in [ms] that the 
user waited before making a decision. The SKIP option is used for exceptional 
situations, i.e. the user entered a scenario area by mistake and exited it right 
away without starting a level. 

○ BORED => the user was bored 
○ ENGAGED => the user was engaged 
○ FRUSTRATED => the user was frustrated 
○ SKIP => the user skipped the selection 

● Shimmer => in order to facilitate the synchronization between the Shimmer 
device and the other sensors, the Shimmer internal timestamp is added when a 
scenario is started/stopped 
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Note that the value of timestamp written in each of the files just mentioned is 
synchronized and taken from the same context. Although the application itself runs 
mainly on one thread, some of the sensors might have a delay in reading or providing 
data. When available, refer to both the timestamp and int_timestamp values to 
understand if the delay between the polling of data from a sensor and the writing to 
file operation should be taken into consideration or if it’s negligible. 

 

The Magic XRoom provides a system to request the user for their emotional state (self-
annotations) at specific moments throughout the experience. 

 

- Figure 34. User feedback screen in the Magic XRoom, 
including the three emotions according to the 

Theory of Flow 
The Feedback Panel contains four interactable buttons with the following results: 

● Bored: the experience is not providing engagement comparable to the user skill 
level 

● Engaged: the experience is engaging for the user, the difficulty is correctly 
balanced for the user skill level 

● Frustrated: the user is experiencing a frustration or anxiety because of a gap 
between their skill level and the experience difficulty 

● Skip: the user has the option to not answer 

The panel is shown after each level/scenario depending on the User Settings, but can 
also be toggled manually by pressing the F key on the keyboard. 

 

As mentioned before, the Magic XRoom contains four scenarios meant to elicit specific 
emotions and gather data from external sensors. Each experience is composed of 
increasingly difficult tasks that require various skill levels to complete before a given 
time limit.  

Some of the experiences are positioned on desks that can be adjusted in height with 
a handle. 
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- Figure 35. Desk handle for level adjustment 
Stacking Cubes 

Stacking Cubes is an experience in which the user is tasked with positioning 4 cubes 
on top of each other within a time limit. The cubes properties vary between levels: 

1. The cubes have no particular property and are the same size 
2. The cubes are slippery 
3. The cubes are bouncy 
4. The cubes are of different size and must be stacked from small to big 
5. The cubes are the same size but an external force (wind) is making it difficult 

to stack them straight 

Failed levels must be repeated until successfully completed. 

 

- Figure 36. Initial screen of stacking game scenario 
Color Words 

Color Words is a fast-paced experience in which the user is tasked to select (touch) 
one of the cubes on the desk depending on its color. The correct color is shown on the 
screen as a word describing the color but coloured with a different one. For example, 
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if the word yellow appears in red color, the user must select a yellow cube, not a red 
one. Multiple cubes of the same color might appear. 

As the game progresses the number of cubes available increases and the time available 
to make a decision decreases, until the user chooses the wrong color or  there is not 
enough time to select a cube and the experience ends. 

 

- Figure 37. Color words scenario screen when the 
time is out 

Canvas Painting 

Canvas Painting is a painting minigame where the user is tasked with drawing a specific 
shape without exiting a given area. A limited number of mistakes are allowed. 

 

- Figure 38. Canvas painting scenario instructions 
screen 
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Tower of Hanoi 

Tower of Hanoi is a relatively famous game. The version used in the Magic XRoom is 
composed of 3 rods and 3 discs. The rods are of different sizes: the left-most can hold 
3 disks at the same time, the middle one 2, and the right-most only 1. 

The user is presented with two sets of rods and disks. The set closer to the user is the 
interactive one (interaction set), while the other one represents the target configuration 
(configuration set). At the beginning of each level the configuration set shows the target 
configuration and the user must try and match it with the disks in the interaction set. 
The moves available are limited (depending on the level and difficulty) and a time limit 
is displayed on the screen. 

 

- Figure 39. Tower of Hanoi scenario instructions 
screen 

4.1.1.5. Open-source Code 

The latest version of the Magic Xroom and its source code can be found at: 

https://github.com/XR2Learn/magic-xroom 

-  

-  

 

-  

- Table 12. Magic XRoom versions and their release 
dates. 

Version Release date 

https://github.com/XR2Learn/magic-xroom
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v0.1.0 2023-11-07 

v0.2.0 2023-11-13 

v0.2.1 2023-11-16 

v0.2.2 2023-11-20 

v0.3.0 2023-11-30 

v0.4.0 2024-01-18 

v1.0.0 2024-02-12 

v1.1.0 Planned for 2024-02-29 

v1.0.0 is the result of continuous improvements and feedback from the January pilot. 
v1.1.0 is planned for the submission of this document as a public release. The project 
contents will be cleaned and formatted following sector standards in order to facilitate 
its use and understanding. 

4.1.1.6. Known Issues 

The following is a comprehensive list of known issues and potential bugs related to 
the Magic Xroom as of the publication of this document. 

SRanipal 

SRanipal serves as the runtime environment, enabling interaction with the Vive Facial 
Tracker and related Vive eye/face tracking hardware on Windows PCs. It is currently 
the only option for the Vive Focus face and eye accessories. A review of the existing 
online resources, including documentation, support, and code, indicates that SRanipal 
is not yet in a finalized release state. 

To provide a better understanding of the current state of the SRanipal framework, the 
following are a few examples of the many issues found during development which one 
would usually not expect from this type of software: 

● Several recent versions were tested, and they presented unnecessarily use and 
allocation of huge portions of the computer resources; 

● In the latest versions, if left unchecked, the framework quickly generates 
gigabytes of data in log files. This feature cannot be turned off; 

● Launching the SRanipal runtime triggers the launch of additional processes 
which seem unnecessary and use a significant amount of system resources; 

● If the installation process fails, which has been shown to occur frequently, the 
uninstaller fails to entirely cleanse the system, leaving it in an intermediate 
state. Attempting to reinstall the software consequently triggers a well-known 
error, requiring manually deleting specific system registry keys with 
administrative privileges to fix the issue. 

The Magic Xroom is significantly dependent on the data generated by this framework, 
which frequently appears inconsistent or missing. Throughout the initial data collection 
trial, several specific behaviors were noted, leading to the compilation of a list of 
guidelines aimed at preventing or reducing issues associated with data obtained 
through this framework: 

● Before initiating a data collection session, verify the functionality of all sensors 
through a preliminary simulation. 
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● Adjust the headset to fit the user's facial structure accurately: 
○ Calibration of the eye tracker should start only after the headset has 

been correctly positioned; 
○ It is essential to position the headset in a manner that does not 

obstruct any portion of the mouth area, as visibility of this region is 
crucial for the face tracker's effectiveness. 

It is important to note that the version of SRanipal installed on the computer can have 
a significant impact on the outputs of Magic Xroom. Currently, Magic Xroom only 
supports the Steam SRanipal version, which should be the only version installed on 
the machine. Using multiple SRanipal versions on a single computer can cause 
interference issues between them and affect the functionality of Magic Xroom. 

We will closely monitor future releases of this framework and evaluate potential 
upgrades of the version used for the Magic Xroom. 

VR tracking area 

For consistent performance with the Vive Focus headset, the user must stay within 
the predefined tracking zone. Should the controllers or headset move beyond the 
boundaries of this area, updates to their positional and rotational data might cease, 
and this interruption will persist even upon re-entering the designated tracking zone. 

The best solution currently is to monitor the user's movements during data collection 
strictly. 

Unity physics engine 

During the operation of the Magic Xroom application, it has been documented that 
removing the headset activates a 'low performance' mode, resulting in a reduced 
application refresh rate. This adjustment adversely impacts the Unity physics engine, 
as it may cause frames to be skipped or not processed within the anticipated 
timeframe. Consequently, objects within the virtual reality environment can 
unexpectedly accelerate to excessive velocities, potentially colliding with other objects 
and disrupting specific scenarios. 

The recommended corrective action, in situations where the physics within the virtual 
environment break, is to restart the application and resume from the point before the 
disruption. 

Further testing of the Unity layers and colliders systems is necessary to understand 
what triggers these situations and to develop ways to prevent them. 

Vive Focus eye tracker 

The Vive Focus eye tracker (Figure 40) is positioned between the headset lenses and 
the padding. Despite its slim profile, it introduces a gap that causes visual blurriness. 
Adjustments to the headset position or interpupillary distance offer minimal 
improvement. This issue has been widely reported by users as the cause of diminished 
virtual reality immersion, complicated text readability, and impaired depth perception. 
Furthermore, the accuracy of data collected from users who wear thick prescription 
glasses or glasses with wide frames is notably compromised, leading to data loss or 
inconsistent outcomes from the eye tracker. 
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- Figure 40. Vive Focus eye tracker. 

4.2. DATA COLLECTION 

4.2.1. Data Collection Protocol for Magic XRoom 

The main objective of creating a data collection protocol71 72 is to have a unified 
approach that can be exploited by a party that collects data using Magic Xroom. This 
would ensure homogeneity across participants, make data processing and analysis 
more convenient, improve data readability, and reduce possible outliers. The proposed 
data collection protocol uses the power of Virtual Reality (VR) technology to create a 
framework for studying human emotions. By combining a VR headset with hand-held 
controllers, participants are immersed in a stimulating Magic XRoom environment 
where their emotional responses to puzzle-solving tasks are precisely recorded. 
Incorporating the Shimmer sensor to capture Galvanic Skin Response (GSR) and 
PhotoPlethysmoGram (PPG) data is very valuable, as it directly measures physiological 
changes associated with emotional states. Moreover, adding eye and face tracking 
sensors mounted on the VR headset enriches the data by capturing subtle eye and 
facial movements of various emotions. For the technical documentation concerning 
Magic XRoom, please refer to Section 4.1.1.   

 
71 Costa, Jean, et al. "Boostmeup: Improving cognitive performance in the moment by 
unobtrusively regulating emotions with a smartwatch." Proceedings of the ACM on Interactive, 
Mobile, Wearable and Ubiquitous Technologies 3.2 (2019): 1-23. 

72 Gasparini, Francesca, et al. "Personalized PPG Normalization Based on Subject Heartbeat in 
Resting State Condition." Signals 3.2 (2022): 249-265. 



 

81 
 

D3.2 - XR2Learn enablers 

 

- Figure 41. Data collection protocol diagram. 

We illustrate the suggested data collection protocol as a diagram in Figure 41. 
Furthermore, the step-by-step protocol for a data collection session can be 
summarized as follows: 

1. Ensure that the VR headset and both hand controllers are charged, running, and 
connected to the system. Additionally, all required softwares must be run before 
starting the Magic XRoom. All these steps help avoiding data loss.  

2. Invite the participant to the data collection space. 

3. Provide participants with the informed consent agreement form and require 
them to read it carefully. This form is expected to be filled online and on paper 
for archiving purposes. 

a. This form explains the purpose of this research study, study procedures, 
time required for the whole experiment, risks and benefits, data 
confidentiality, data usage, possibility of data withdrawal by the 
participant, and participants' contact information.  More specifically, The 
informed consent document explains data modalities that will be 
collected during sessions which shortly are physiological (GSR, PPG), VR, 
eye tracking, and face tracking emotional data via wearable sensors 
during a VR puzzle-solving task. The session lasts about 30 minutes with 
minimal associated risks. The document emphasizes the confidentiality 
of the data collected and the anonymity of participants. It also highlights 
compliance with data protection laws (GDPR). Participation is voluntary, 
and participants can withdraw at any time without consequences, 
including the option to have their data removed. The document also 
provides contact information for the study organizers and includes a 
section for participants to acknowledge their consent. 

b. The consent forms can be created and hosted online using dedicated 
platforms compliant with GDPR and offering secure data storage and 
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encryption of data. The examples of such platforms are “jotform”73 and 
“Qualtrics”74. 

4. Ask participants to fill the second form, namely the pre-study questionnaire, 
that collects demographic information and metadata. Specifically, it collects 
basic demographic information such as age, gender, education, occupation, 
and/or ethnicity. Participants are also asked about their proficiency with 
computers and electronic devices, previous experience with VR, and familiarity 
with VR technology. The form inquires about the last time they experienced VR 
and if they have any conditions like motion sickness or anxiety that might affect 
their VR experience. Additionally, participants are asked about any recent 
medications and their main motivation for participating in the study. Finally, 
there's a section for participants to confirm their understanding and agreement 
to proceed with the VR experiment. This form can also be hosted online. 

5. The participant is demonstrated how handheld controllers and VR headset work 
in the Magic XRoom. This step is done by the person responsible for collecting 
the data.  

a. A tutorial is conducted by the dataset collector to avoid confusion during 
the execution of the experiments. The tutorial includes a brief description 
of the devices functionality, the navigation in the VR environment and the 
functioning of the puzzles.  

b. The dataset collector wears all VR equipment and explains each and every 
part of the virtual environment including puzzles (one by one), how to 
teleport in the virtual environment, feedback system, and interaction 
buttons on the handheld controllers. This process continues until the 
dataset collector is sure that the participant is aware of the expected 
previous knowledge from the participant. However, during the 
experiment, participants will be guided by the dataset collector during 
the whole process if needed. 

6. Adjust the VR headset (including face and eye tracker) on the participant’s head 
and give them handheld controllers, in which they enter the Magic XRoom. 
Before starting the data collection, the user can take some time to familiarize 
them with the system. 

7. The next step is to attach the Shimmer sensor to the subject's wrist of the non-
dominant hand in which GSR (recording EDA) sensors will be attached to the 
index finger and the finger next to it. Also, the PPG sensor (recording BVP) will 
be attached to the ring finger. The sensor must be tightened on the fingers and 
wrist in order to collect more accurate data. The participant could continue 
familiarizing with the system if needed. 

8. Participants start data collection. Magic XRoom offers 4 interactive games, also 
referred to as scenarios, that should be completed in the order specified in the 
next step. Before/after each scenario, a participant should press a red button 
next to the “Tower of Hanoi” scenario to start/finish data collection. Detailed 
instructions: 

● Participants can teleport to the experiments/scenarios and start 
interacting with them. 

 
73 https://eu.jotform.com/  
74 https://www.qualtrics.com/  

https://eu.jotform.com/
https://www.qualtrics.com/
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● Each experiment has a table (except the “Canvas Painter”) which has a 
blue button in its left corner. By pushing the blue button, the experiment 
starts. 

● Each scenario is suggested to be completed in two stages: 

a. Warming up: makes participants familiar with the scenario. 

b. Main trial: collect data when the participant is familiar with the 
experiment environment. 

9. The suggested order of the games/scenarios is presented below. Overall, 4 
(without warming up) or 8 (with warming up) recordings are collected within a 
single session with one participant.  

a. Canvas Painter 

b. Tower of Hanoi 

c. Color Words 

d. Cube Stacking 

10. After finishing each level in each scenario, the participant will be asked  to 
provide self-annotation on the emotion experienced. As previously mentioned, 
the options that can be selected are “Bored”, “Engaged” and, “Frustrated” (based 
on flow theory) and “Skip”.  

4.2.2. Data Collection Pilots 

In January 2024, the first data collection pilots using Magic XRoom were conducted at 
SUPSI and UM premises. These pilots involved 31 subjects and were conducted after 
the consent forms and questionnaires were approved by SUPSI's and UM's ethics 
committees. The main objective of these pilots was to test Magic XRoom's performance 
with users and identify any issues with the tool, which has been used to improve Magic 
XRoom functionalities and performance. The data collected during the pilots has been 
used to establish the format of bio-measurement data and develop pre-processing 
pipelines within the emotion recognition enablers. The brief statistics of these pilots 
are summarized in Table 13.  
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- Table 13. Data collection pilots statistics. 

Dates Location Number of 
participants 

Purpose 

January-February 
2024 

SUPSI 20 Testing Magic XRoom 

January 2024 UM 13 Testing Magic XRoom, obtain data 
input format to implement 
enabler components for bio-
measurement modality 
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5.  CONCLUSION 

This document describes the progress achieved in Task 3.2, "XR2Learn Enablers", during 
the first 14 months of the XR2Learn project, which is part of XR2Learn Phase B, as 
described in Section 1.2.2 of the proposal document. Task 3.2 is focused on designing, 
implementing, and delivering novel enablers for XR applications, and during the first 
sub-phase, the enablers' specification and development have been carried out. The 
report also contains information on the additional components and functionalities that 
were developed beyond the project proposal enablers. These include Magic XRoom, a 
data collection tool, a command line interface to make the enablers more user-friendly, 
and a graphical user interface demo to demonstrate the communication between 
Personalization tools (Enabler 6), Inference tools, and XR Unity applications. All tools 
described were developed following stablished software engineering practices to foster 
principles of open science, software sustainability and quality. They will also be 
available as open-source repositories on GitHub.  

According to the project workplan, the second sub-phase will focus on improving and 
integrating enablers with applications. As per the plan, we will undertake actions to 
improve and expand the functionality of enablers and integrate them with beacon 
application(s), demonstrating, this way, how to integrate enablers with other 
applications, including the open-call projects. The improvement effort will focus on 
expanding the supported modalities (e.g., bio-measurements, body-tracking) and 
including additional functionalities and trained models. Meanwhile, the integration 
effort will focus on building an end-to-end system, including data input capture and 
pre-processing components, Inference tools, Personalization tools, and a Unity 
application. These improvements and integration progress for the enablers will be 
presented in the second version of the deliverable in Month 26 of the project. 


