

DOCUMENT DELIVERABLE

29/02/2024

D3.2 - XR2Learn enablers

WP3 – XR Technology PUSH

February 2024

Ref. Ares(2024)1818769 - 08/03/2024

2

D3.2 - XR2Learn enablers

Author UM

Work Package WP3 – XR Technology PUSH

Delivery Date 08.03.2024

Due Date 29.02.2024

Classification Public

Status of deliverable

Action/role Name Date (dd.mm.yyyy)

Submitted by Ioannis Chatzigiannakis (CNIT) 08.03.2024

Responsible (WP leader) LS 29.02.2024

Approved by (internal
reviewer)

Filisia Melissari (SYN)
Ioannis Chatzigiannakis (CNIT)

29.02.2024

Revision history

Date (dd.mm.yyyy) Author(s) Comments

04.12.2023 UM Initial template

29.01.2024 LS, SUPSI, UM Partner contributions

14.02.2024 LS, SUPSI, UM Revisions

16.02.2024 UM Version for the internal review

28.02.2024 UM Preparing final version for
submission

3

D3.2 - XR2Learn enablers

Author(s) contact information

Name Organization E-mail

Enrique Hortal, Annanda
Sousa, Bulat Khaertdinov

Maastricht University
(UM)

enrique.hortal@maastrich
tuniversity.nl

mailto:enrique.hortal@maastrichtuniversity.nl
mailto:enrique.hortal@maastrichtuniversity.nl

4

D3.2 - XR2Learn enablers

- TABLE OF CONTENTS

Table of Contents ... 4

List of Abbreviations .. 7

EXECUTIVE SUMMARY.. 9

1. INTRODUCTION .. 10

2. Authoring Tool: Enabler 1 ... 12

2.1. INTERACT: Authoring Tool .. 12

2.1.1. Technical Documentation .. 12

2.1.1.1. Description ... 12

2.1.1.2. Prerequisites .. 13

2.1.1.3. Installation .. 13

2.1.1.4. Basic User Manual ... 14

2.1.1.5. Repository and license ... 19

2.2. Disclaimer .. 20

3. Emotion Recognition Tools (Enablers 2-6) ... 21

3.1. Preliminary Research: Emotion Representation Learning and Emotion Recognition.... 23

3.1.1. Speech Emotion Recognition .. 24

3.1.1.1. Speech Representations .. 24

3.1.1.2. Open-source Datasets and Experimental Setup ... 26

3.1.1.3. Evaluations .. 28

3.1.1.4. Challenges and Limitations .. 29

3.1.2. Emotion Recognition through Bio-measurements ... 30

3.1.2.1. Learning Representations from Bio-measurements 31

3.1.2.2. Open-source Datasets and Experimental Setup ... 31

3.1.2.3. Evaluations .. 32

3.1.2.4. Challenges and Limitations .. 34

3.1.3. Emotion Recognition using Body Tracking .. 35

3.1.3.1. Features and Classifiers ... 35

3.1.3.2. Open-source Datasets ... 36

Challenges and Limitations ... 39

3.2. Training Tools .. 40

3.2.1. Technical Documentation .. 40

3.2.1.1. Description ... 40

3.2.1.2. Prerequisites .. 42

3.2.1.3. Installation .. 42

3.2.1.4. Basic User manual ... 43

3.2.1.5. Open-source Code ... 44

3.2.2. Enabler 2: Emotion Representation Learning Tool .. 45

3.2.2.1. Description ... 45

3.2.2.2. Basic User manual ... 45

3.2.3. Enabler 3: Tools for Using Emotion Representations .. 46

3.2.3.1. Description ... 46

3.2.3.2. Basic User manual ... 47

5

D3.2 - XR2Learn enablers

3.2.4. Enabler 4: Unimodal Emotion Classification Tools .. 47

3.2.4.1. Description ... 47

3.2.4.2. Basic User manual ... 47

3.3. Inference Tools .. 48

3.3.1. Technical Documentation .. 48

3.3.1.1. Description ... 48

3.3.1.2. Prerequisites .. 49

3.3.1.3. Installation .. 49

3.3.1.4. Basic User Manual ... 49

3.3.1.5. Open-source Code ... 51

3.3.2. Enabler 5: Multimodal Fusion Tools .. 51

3.3.2.1. Description ... 51

3.3.2.2. Basic User Manual ... 52

3.3.3. Emotion Classification and Model Evaluation .. 52

3.3.3.1. Description ... 52

3.3.3.2. Basic User Manual ... 52

3.4. Personalization Tool .. 53

3.4.1. Technical Documentation .. 53

3.4.1.1. Description ... 53

3.4.1.2. Prerequisites .. 54

3.4.1.3. Installation .. 54

3.4.1.4. Basic User Manual ... 55

3.4.1.5. Open-source code .. 55

3.4.2. Enabler 6: Personalization tool.. 56

3.4.2.1. Description ... 56

3.4.2.2. Basic User Manual ... 56

3.4.3. Demo UI ... 57

3.4.3.1. Description ... 57

3.4.3.2. Basic User Manual ... 58

3.5. Command Line Interface (CLI) ... 59

3.5.1. Technical Documentation .. 59

3.5.1.1. Description ... 59

3.5.1.2. Prerequisites .. 60

3.5.1.3. Installation .. 60

3.5.1.4. Basic User Manual ... 60

3.5.1.5. Open-source Code ... 61

4. Data Acquisition ... 64

4.1. Magic XRoom: Data Collection Tool .. 64

4.1.1. Technical Documentation .. 64

4.1.1.1. Description ... 64

4.1.1.2. Prerequisites .. 65

4.1.1.3. Installation .. 65

4.1.1.4. Basic User Manual ... 66

4.1.1.5. Open-source Code ... 77

4.1.1.6. Known Issues ... 78

4.2. Data Collection .. 80

4.2.1. Data Collection Protocol for Magic XRoom ... 80

6

D3.2 - XR2Learn enablers

4.2.2. Data Collection Pilots .. 83

5. CONCLUSION ... 85

7

D3.2 - XR2Learn enablers

- LIST OF ABBREVIATIONS

BA Beacon application

CNN Convolutional neural network

EdTech Educational Technologies

KPI Key performance indicator

MFCC Mel-frequency cepstral coefficients

MLP Multilayer perceptron

SSL Self-supervised learning

WP Work package

XR Extended reality

Partners’ names and acronyms

CNIT CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE
TELECOMUNICAZIONI

F6S F6S NETWORK IRELAND LIMITED

MAG MAGGIOLI SPA

LS LIGHT AND SHADOWS

SYN SYNELIXIS SOLUTIONS SA

SUPSI SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA
ITALIANA

UM UNIVERSITEIT MAASTRICHT

HOU HELLENIC OPEN UNIVERSITY

8

D3.2 - XR2Learn enablers

EADTU EUROPEAN ASSOCIATION OF DISTANCE TEACHING UNIVERSITIES

EITM EIT MANUFACTURING SOUTH SRL

9

D3.2 - XR2Learn enablers

- EXECUTIVE SUMMARY

This deliverable, D3.2 XR2Learn enablers, outlines the development of innovative tools
designed to foster the creation and integration of Extended Reality (XR) learning
applications enriched by affective computing. The contributions of the proposed
enablers are two-fold: to reduce the workload required for the development of XR
learning applications and to promote the personalization and enhancement of the
learning experience in an effortless and seamless manner. In the context of Task 3.2,
the following tools have been developed:

● Enabler 1: The Authoring Tool, a key component that simplifies the creation of
XR applications specifically tailored for educational purposes. This tool allows
educators and developers to easily build immersive learning environments.

● Enablers 2-5: These enablers focus on the development of tools for automatic
emotion recognition, utilizing various input data modalities. With the aim of
facilitating the use of not only public datasets but also "in-house" data in an
effortless manner, the Enablers 2-5 include:

○ Self-Supervised Learning: operates without the need for labeled data to
pre-train Deep Learning models, allows to train models on emotions with
less annotated data and resources.

○ Supervised Learning: requires labeled data and provides a structured
approach to identify user emotions from input modalities.

● Enabler 6: This enabler represents the last step in the affective computing
pipeline, effectively integrating the capabilities of the automatic emotion
detection components (enablers 2-5) and facilitating the use of its output as a
source for the adaptation of the learning material. Its primary function is to
utilize the detected emotions of the user to suggest appropriate learning
activities. This personalization aspect ensures that the learning experience is
optimized for each individual, making it more engaging and effective.

● Magic XRoom: This innovative feature serves as a tool for collecting data. This
data is crucial for the evaluation of the enablers, as it provides the necessary
input for emotion detection algorithms.

In conclusion, the deliverable presents a set of novel enablers that can be utilized to
accelerate the development of educational XR applications. Moreover, by integrating
XR applications with required equipment, data collection modules and emotion
recognition enablers, it paves the way for a more immersive, personalized learning
experience that is adaptable to the emotional states of the users, thereby enhancing
the overall effectiveness of the educational process.

10

D3.2 - XR2Learn enablers

1. INTRODUCTION

This deliverable reports the progress achieved in Task 3.2, "XR2Learn Enablers" during
the first 14 months of the XR2Learn project. This covers the developments made during
the first sub-phase of Phase B described in Section 1.2.2 of the proposal document.
Being a part of Work Package 3 XR Technology Push, Task 3.2 is focused on designing,
implementing and delivering novel enablers for XR applications. Thus, the concept of
enablers is central to this task. Essentially, they are building blocks or components
that can be used to speed up the development of XR-based applications. This, in turn,
makes developing XR applications more manageable and cost-effective, turning these
applications more attractive and accessible.

The XR2Learn project introduces two types of XR enablers, namely the authoring tool
(Enabler 1; Section 2) and affect detection, or emotion recognition, enablers (Enablers
2, 3, 4, 5, 6; Section 3). As highlighted in the proposal document, the former is a “tool
for designing more efficiently 3D spaces (e.g. construction/manufacturing environments)
under physical space constraints”, whereas the latter aims to “infer user perception
such as affect detection, emotion recognition and AI based learner progress
assessment” using three modalities, namely bio-measurement, speech and/or body
tracking signals. This document specifies the enablers and describes the progress of
their development within the first phase of the task. The current progress in emotion
recognition enablers is showcased using one modality, namely audio, acquired from
open-source data. In the subsequent phase of the project other modalities (e.g. bio-
measurements, body-tracking) are planned to be integrated with the enablers following
the data collection required for these modalities.

We also report the work conducted on components and functionalities beyond the
project proposal with regards to Task 3.2. They were identified by partners contributing
to the task as necessary for the development of the enablers based on the conducted
preliminary research and drafting of the initial system design. These components
include:

● Magic XRoom (Section 4.1) is a data collection tool which is vital for acquiring
training data for emotion recognition enablers in education settings. The
preliminary research on open-source datasets, conducted in the first months of
the project, identified multiple challenges that are faced when building models
using these data. A common challenge for all modalities is that there is a lack
of data corresponding to educational settings annotated with the appropriate
emotional models that are focused on user engagement. Nevertheless, training
Machine and Deep Learning models for emotion recognition requires some
amounts of annotated data, which we propose to collect through Magic XRoom.

● Command Line Interface (Section 3.5) is an automated interface that provides
users with a single entrypoint for Enablers 2-6 allowing them to execute the
whole emotion recognition pipeline. Currently, CLI is integrated with Enablers 2-
6, which supports audio modality provided from open-source data.

● Demo User Interface (Demo UI; Section 3.4.3) is a web-based application
implemented to display the communication between Inference and
Personalization tools (Enabler 6), and the XR Unity application.

The contributions of this deliverable to other tasks and deliverables in Work Package
3 can be summarized as follows:

● Task 3.1; Deliverable 3.1: the design of the tools and components facilitate the
integration of enablers with Beacon Apps. In particular, the Personalization Tool
(Enabler 6) exploits the Publisher/Subscriber messaging protocol that is

11

D3.2 - XR2Learn enablers

intended to provide asynchronous communication between the tool and XR
applications in Unity. Furthermore, a user-friendly Demo UI has been
implemented to showcase this communication and workflow of the emotion
recognition enablers.

● Tasks 3.3, 3.4; Deliverable 3.3: the implemented enablers are delivered as open-
source code repositories with consistent documentation style and thorough
README files to guide users through exploiting the enablers. These guidance
documents will be further extended into the Wiki pages concerning XR2Learn
enablers.

This document splits the reporting of technical work in five main sections that can be
summarized as follows:

● Section 2 describes the Authoring Tool (Enabler 1) starting with a description of
this Enabler’s motivation and main functionalities. This section then contains
prerequisites, installation and basic user manual information.

● Section 3 presents the technical design and development of emotion recognition
tools, or Enablers 2-6. This section begins with preliminary research conducted
on emotion representation learning and emotion recognition in audio, bio-
measurements, body tracking modalities. The conducted analysis explores the
effectiveness and efficiency of the state-of-the-art emotion recognition
techniques with the specified modalities. Besides, it comments on challenges
and limitations that can be faced when developing these models within
Enablers 2-6. Furthermore, it describes each enabler and additional components
developed to support the enablers' functionalities, including their application,
prerequisites, installation instructions, a basic user manual and details on open-
source licenses.

● Section 4 introduces Magic XRoom as the suggested and developed data
collection tool. This section also follows a similar structure summarizing the
prerequisites, the instructions to set it up along with the required equipment,
as well as the technical documentation of XRoom.

● Section 5 summarizes the developments made and progress achieved in Task
3.2 up to Month 14 of the project. Furthermore, this section outlines a list of
actions and tasks considered to achieve the two main objectives of the second
sub-phase of Phase B: improving enablers and integrating them with Beacon
applications.

12

D3.2 - XR2Learn enablers

2. AUTHORING TOOL: ENABLER 1

2.1. INTERACT: AUTHORING TOOL

2.1.1. Technical Documentation

2.1.1.1. Description

To meet the evolving demands of learning environments and educational training
needs, there is a growing requirement for authoring tools to allow rapid design and
development of XR training scenarios built upon established frameworks. It is,
therefore, crucial to develop authoring tools that enable the swift creation of training
scenarios supporting a broader range of features beyond basic 3D object manipulation
and avatar navigation in virtual environments. These tools should address aspects such
as ergonomics, advanced physics for objects, and scenario creation.

To achieve this goal, the first enabler provided to the XR2Learn community is an
authoring tool called INTERACT, delivered as a Unity plugin that can significantly reduce
the time needed to develop intelligent tutoring systems (ITS). The plugin is a no-code
(or low-code) generic tool for creating physics-based VR training scenarios. INTERACT
is based on a cutting-edge physics engine, allowing realistic interactions such as
collision detection and ergonomic evaluations. The plugin empowers users to create
physically realistic VR simulations for diverse applications, including training in heavy
industry, education, and energy sectors, using 3D data (such as CAD or point clouds)
imported into the authoring tool. We demonstrated the practical application of
INTERACT by developing Beacon Application 1 (consult Deliverable D3.1 for further
information), a training program for a laser cutting machine. The resulting XR
application offers a virtual reality training scenario focusing on machine maintenance
tasks. Users are guided through a step-by-step process of using a laser cutting
machine, with their performance validated through a final score.

The main features are summarized as follows:

• Embedded physics engine: handling multi-body dynamics, collision detection, friction,
and kinematics, providing realistic behavior for objects in a 3D environment.

• Advanced collision detection: This feature allows accurate and efficient detection of
collisions between objects, even when dealing with complex models.

• Cables: The software can simulate cables and flexible beams using finite element
analysis, providing realistic representations of these elements in the 3D environment.

• Grab: This feature allows users to manipulate 3D objects directly with their hands,
providing a more natural and intuitive way to interact with the virtual environment
whether using VR controllers or hand-tracking systems.

• Scenarization: This module is designed for assembly training, which allows creating
and editing complex assembly scenarios. This module supports gamifying scenes and
creating a pedagogical scenario through a node-based graphical interface.

13

D3.2 - XR2Learn enablers

- Figure 1. List of modules and features inside the
INTERACT authoring tool

2.1.1.2. Prerequisites

To use Enabler 1, INTERACT, the following requirements must be met:

● A VR-ready computer (appropriate graphics card: see FAQ)
● Latest version of SteamVR installed (minimum recommended version 2.1)
● Unity version 2022.3 LTS (minimum and recommended) installed with a

valid Unity Pro license
2.1.1.3. Installation

INTERACT is distributed as a Unity package. The installation of the INTERACT package
in a new Unity project simply consists of importing the *.unitypackage into the project.

You can do it by dragging and dropping the unitypackage in the Project tab, or using
the menu Assets > Import Package > Custom Package... :

https://light-and-shadows.com/documentation/interact/faq/#what-is-the-recommended-hardware-and-software-configuration

14

D3.2 - XR2Learn enablers

- Figure 2. INTERACT installation steps

2.1.1.4. Basic User Manual

Creating an INTERACT scene and configuring the XR avatar

The initial steps when creating a new simulation are:

● Start from an empty Unity scene (File/New scene)
● In the INTERACT menu, click on "Create New Simulation"
● Choose between the two preconfigured environments (White Lab or Factory).

- Figure 3. INTERACT preconfigured environments

The next step is to choose the hardware devices (Display Device, Hand Tracking, Body
Tracking) through which the user will interact in the XR environment.

15

D3.2 - XR2Learn enablers

- Figure 4. INTERACT hardware configuration and
avatar creation

As a result, a default environment and a ready-to-use avatar have been created in the
Unity scene and hierarchy. If a VR device is not available, the desktop player can be
used in order to visualize the scene.

INTERACT allows users to switch from the working session to the VR simulation quickly.
To that end:

● In the Unity toolbar, click on the Play button
● Put on a headset, a headset user should now visualize the environment at scale

1:1.

Importing 3D objects and point clouds

The use of the Pixyz plugin is strongly recommended in order to import CAD models in
Unity. PiXYZ plugin is delivered together with Unity Industrial licenses. Supported 3D
formats can be found in the following link: Supported formats | Pixyz Plugin | 2.0.3

To import 3D CAD models into Unity3D:

● Click on Interact > Import > CAD model
● In the explorer, select the desired CAD file and click on Import. The CAD Import

Settings window appears. From there, the default import settings can be
adjusted if needed.

https://docs.unity3d.com/Packages/com.unity.pixyz.plugin4unity@2.0/manual/supported-formats.html

16

D3.2 - XR2Learn enablers

- Figure 5. Example of 3D object imported with PiXYZ
and its hierarchy

INTERACT also supports natively point clouds, becoming increasingly popular for
capturing and analyzing real-world data. Contrary to CAD data, a point cloud is a large
set of 3D points that represent the surface of an object or environment. These points
are usually obtained using a 3D laser scanner and can be highly dense, representing
millions or even billions of points.

Importing Point Cloud is straightforward with INTERACT using the
INTERACT/Import/Point Cloud menu. Supported point cloud formats are .ptx, .pts, .las,
.e57.

- Figure 6. Example of point cloud imported into an
INTERACT scene

Configuring object interactions and physics

A physics engine is a software component that simulates physical phenomena, such
as motion, forces, and collisions, in a virtual environment. In INTERACT, the physics
engine is responsible for calculating the behavior of objects in the scene based on their
physical properties and the interactions between them. Some examples of physics
behavior provided by the INTERACT physics engine are:

● Collision between objects
● Part mobilities and constraints

17

D3.2 - XR2Learn enablers

● Gravity
● Friction properties
● Part grabbing and manipulation
● Cables

NB: INTERACT does not use Unity’s default physics engine which is tailored for video
games and makes assumptions and simplifications incompatible with industrial use
cases. INTERACT embeds the XDE Physics engine, an interactive physics engine,
featuring precise collision detection, and multi-body and beam dynamics.

By default, when 3D objects are imported into INTERACT, they have no physical
properties assigned to them. This means they cannot interact with or be affected by
the laws of physics in the scene. To add physics behavior to an object, the following
steps are needed:

● Select the object.
● Click on the INTERACT/Physics/Physicalize object in the toolbar menu (shortcut:

Shift+P).
● Choose the type of mobility or constraint to assign to the object (see joint types)

- Figure 7. Physicalizing an object and selecting
kinematics properties

● Configure the physical properties of the object, such as mass, friction, motion
constraints in the Inspector.

The object is then transformed into a so-called Rigid Body, recognized in the hierarchy
by a gear icon. When launching the simulation, Rigid Bodies will behave according to
the laws of physics and the chosen mobility type (joint). It will react to collisions as
well as its children in the physical hierarchy.

https://light-and-shadows.com/documentation/xrtwin/physics.html#types-of-joints

18

D3.2 - XR2Learn enablers

- Figure 8. Example of complex kinematic structure
featuring INTERACT physics engine

Creating a step-by-step scenario

The next step is the scenarization, where an assembly sequence can be configured.
Usually, the assembly sequences constitute the practical exercises of a training
application. The user must define the order in which different parts are assembled to
form a complete product. This typically involves a series of steps, in which each part
is added to the product in a specific order. INTERACT helps to create such assembly
sequences by visualizing the different parts and how they fit together.

In more detail, INTERACT provides the Scenario Graph to create a hierarchy of steps
that create an assembly sequence. The user introduces 3D objects and indicates their
connection through Placing Steps. The user can encode rules for the learning scenario
to unlock the next steps. For example, the assembly of a wheel can only start if the
brake disk is in place AND the bolts have been properly screwed. Several options are
available to describe the assembly process in the Scenario window, including time
constraints that are required before proceeding to a subsequent step, interaction with
robots and actuators, among others. A scenario can also include Events, i.e., actions
that are only triggered under specific conditions. For example, to unwind or activate
another part when a keypoint is reached.

19

D3.2 - XR2Learn enablers

- Figure 9. 3D Visualization of the wheel object.

- Figure 10. Example of the scenario graph and the
series of steps constituting the assembly process.

The steps to create a Scenario in INTERACT are described as follows:

● Create a scenario: INTERACT/Scenarize/Create scenario
● In the hierarchy, select a part to be used in the scenario.
● Click on this part and in the INTERACT menu: INTERACT/Scenarize/Make part

grabbable.

This makes the part accessible from the scenario and grabbable in the VR.

Indicate the target of this object: click on INTERACT/Assembly/Create Part Target. The
target is created and appears as a blue ghost. Place this target where the part should
go. This creates a Placing Step in the scenario with the corresponding part to place
and target.

The Scenario manager automatically handles the visual helpers in runtime (trajectories,
ghost, instruction panel). In Simulation (when switching to the PLAY mode), the
transition between steps occurs when the part-to-place reaches its target.

2.1.1.5. Repository and license

The INTERACT authoring tool can be found in the project’s GitHub repository at:

- https://github.com/XR2Learn/en-1-interact

The public GitHub repository includes most of the core engine and behaviors of
INTERACT, which are delivered as dll (compiled) files. Additionally, it contains many

https://github.com/XR2Learn/en-1-interact

20

D3.2 - XR2Learn enablers

other resources, such as texture samples and scripts, which have been made
accessible, usable and editable to the users.

The repository also contains the current version of INTERACT’s assets (runtime and
Editor behaviors). A link to the official INTERACT delivery system is also included in the
GitHub repository so that users can access an up-to-date version of INTERACT at any
time.

LICENSE

INTERACT is a proprietary software and distributed as closed source.

Available versions

A description of the main changes in the project’s versions can be found at:
https://light-and-shadows.com/documentation/interact/changelog/

2.2. DISCLAIMER

This document only provides a basic user manual to get started with INTERACT. To
dive deeper into INTERACT’s functionality, the user can read the complete
documentation (https://light-and-shadows.com/documentation/interact/) or contact
the XR2Learn consortium for one-to-one technical guidance.

https://light-and-shadows.com/documentation/interact/changelog/
https://light-and-shadows.com/documentation/interact/

21

D3.2 - XR2Learn enablers

3. EMOTION RECOGNITION TOOLS (ENABLERS 2-6)

The emotion recognition (ER) tools proposed in the XR2Learn ecosystem aim to
personalize education scenarios in XR by enabling adaptive learning components that
dynamically adjust to users based on their proficiency level, affective state (emotions),
and challenge level of an educational scenario.

In this section, we describe the five ER enablers, first introduced in the proposal
document, that were designed and implemented in the context of the XR2Learn
project:

- Enabler 2: Emotion representation learning tool, including Self-Supervised
Learning (SSL) pre-text task and handcrafted features extraction;

- Enabler 3: Tools for generating pre-trained emotion representations or
handcrafted features, for one of the modalities exploited in the project
consortium. Currently, Enablers 2-6 have been implemented and tested for
speech signals available in open source data;

- Enabler 4: Tools for building emotion classifiers, in this version, for one of the
modalities in the consortium;

- Enabler 5: Tools for fusing multiple modalities (decision-level fusion);

- Enabler 6: Personalization tool based on the Theory of Flow1.

Whereas each enabler clearly defines a separate functionality to be implemented, from
the software engineering perspective, the enablers can be organized into four main
domains based on their functionalities. A high-level diagram of the proposed
components is illustrated in Figure 11. All the components within the different domains
are cross-platform applications that can be hosted on a local or remote machine.

1 Nakamura, Jeanne, and Mihaly Csikszentmihalyi. "The concept of flow." Handbook of positive
psychology 89 (2002): 105.

22

D3.2 - XR2Learn enablers

- Figure 11. High-level overview of the five emotion
recognition enablers (2-6).

A modularized software engineering architecture approach was utilized to deploy
enablers to foster scalability, flexibility, and dynamic network topology. Different
components can be deployed in separate machines, allowing for a heterogeneous and
dynamic deployment of the components. This is essential to provide the necessary
computation resources for each component. For instance, deep learning training
components need heavy computational resources. With the proposed enabler’s
architecture, these heavy components can be deployed in a more robust computational
machine. On the other hand, other components that do not require as many resources
can be deployed in other machines and they can all communicate with each other.

In the proposed architecture, four domains have been implemented to cover the
functionalities mentioned above the ER enablers:

1. Training Tools:

The Training domain covers all enablers associated with Deep Learning model
training. Specifically, under the context of the Training domain, Enabler 2 was
implemented providing tools for pre-processing, handcrafted feature extraction,
and learning emotion representations using Self-Supervised Learning
techniques. The emotion representations are lower-dimensional descriptive
features extracted from data in an automated manner by optimized Neural
Networks. Moreover, Enabler 3 is delivered as a set of tools to be used to extract
features (pre-trained or handcrafted) from raw data. Finally, pre-trained models
can later be used to build emotion classifiers given annotated data with
emotions as required by Enabler 4. All enablers are implemented using industry-
standard Deep Learning frameworks (PyTorch2, PyTorch Lightning3) that support
accelerated computing on GPUs. It is worth mentioning that all the enables are
delivered as standalone units for each modality via modern containerization
tools (Docker4). Motivated by meeting KPI 2.2 (Number of enablers developed,

2 https://pytorch.org/
3 https://lightning.ai/docs/pytorch/stable/
4 https://www.docker.com/

https://pytorch.org/
https://lightning.ai/docs/pytorch/stable/
https://www.docker.com/

23

D3.2 - XR2Learn enablers

contributed and used by third-parties), such a modular architecture has been
proposed to facilitate and encourage consortium members, open-call
participants, and open-source developers to propose and implement novel
emotion recognition enablers that could be easily integrated into the proposed
framework.

2. Inference Tools:

The Inference domain is a set of components a user will need to exploit and
evaluate emotion representations and classifiers implemented within the
Training domain. Most importantly, the Inference domain implements Enabler 5
by providing a fusion functionality to combine models for a flexible number of
modalities previously trained in the Training domain. Moreover, additional model
evaluation and emotion classification components are proposed to assess the
ER models effortlessly.

3. Personalization Tool:

The Personalization Tool exploits the outputs of Training and Inference tools to
provide personalization of XR scenarios to the users interacting with them.
Utilizing the user’s predicted emotions as the output of the Training and
Inference domain, together with contextual information, e.g., a user and activity
difficulty (challenge) levels, the personalization tool provides personalized
suggestions on the recommended activity level for the user in educational XR
applications.

The Personalization Tool exploits the Publisher/Subscriber messaging protocol
implemented using Redis5 to provide asynchronous, real-time communication
between the Personalization Tool, Inference domain and an XR educational
software implemented using Unity.

4. Command Line Interface:

Command Line Interface (CLI) is an automated interface to facilitate accessing
the enablers’ functionalities, in which a user can quickly and easily access
enablers’ use cases. CLI includes simplified installation and commands, pre-
configured scripts for common use cases, and benchmarks to evaluate the end-
to-end workings of the whole pipeline, working as an integration test for the
system.

3.1. PRELIMINARY RESEARCH: EMOTION REPRESENTATION
LEARNING AND EMOTION RECOGNITION

A crucial step preceding the development of the ER tools is the preliminary research
on emotion recognition that has been conducted to:

- Select Machine and Deep Learning architectures, feature extraction methods,
and representation learning techniques, including Self-Supervised Learning
methods, to be included in the XR2Learn emotion recognition enablers. In recent
decades, emotion recognition methods have evolved from classical Machine
Learning methods to sophisticated Deep Learning topologies. The state-of-the-
art emotion recognition methods based on large models are more accurate and
generalizable, allowing robust features extracted from raw data that can be
transferred to various tasks. However, they generally require more
computational resources and annotated data for training. Besides, the current

5 https://redis.io/docs/interact/pubsub/

https://redis.io/docs/interact/pubsub/

24

D3.2 - XR2Learn enablers

landscape of emotion recognition is heavily based on raw facial expression data,
which might be challenging to obtain with commercial XR equipment. Thus, the
conducted research is focused on modalities going beyond facial expressions,
which (i) have been presented in the XR2Learn proposal document (namely,
speech, bio-measurements, and bodily cues) and (ii) can be used in the XR
context (eye tracking).

- Analyze the adequacy of existing open-source datasets for their use in the
XR2Learn project for pre-training and fine-tuning Deep Learning Models. With
the latest advancements in Deep Representation Learning, models trained on
open-source datasets can be transferred to custom use cases. Nevertheless,
various aspects should be considered, from dataset licenses to emotion
elicitation protocols, before exploiting open-source data within the XR2Learn
project context.

- Highlight challenges on emotion recognition in XR settings. On the one hand, the
XR environment and previously unseen level of immersion provide lots of
opportunities to elicit and, hence, utilize user affective states for adaptive
learning. However, multiple challenges can be faced when Deep Learning-based
emotion recognition should be integrated into educational VR scenarios. These
challenges range from the feasibility of capturing and using certain modalities
to obtaining data on the required range of affective states (e.g. Theory of Flow
annotations).

Parts of the analysis conducted within this section have been presented as scientific
peer-reviewed publications in international venues as follows:

- Mousavi, Seyed Muhammad Hossein, and Khaertdinov, Bulat, et al. "Emotion
Recognition in Adaptive Virtual Reality Settings: Challenges and Opportunities."
The 25th International Conference on Mobile Human-Computer Interaction,
Workshop on Advances of Mobile and Wearable Biometrics, 2023.

3.1.1. Speech Emotion Recognition

Speech is a fundamental channel of expressing and interpreting emotions,
encompassing semantics, paralinguistic information, and prosodic features. Achieving
robust speech emotion recognition (SER) performance can be possible when suitable
representations are extracted.

3.1.1.1. Speech Representations

Approaches to SER can be categorized into two groups based on feature representation
extraction, summarized in Figure 12. First, methods based on more conventional
handcrafted feature extraction methods are still widely exploited in ER systems. For
example, the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)6 is a
classical method of capturing acoustic and paralinguistic information without semantic
richness. Besides, various spectral representations (Figure 13), such as mel-scale
spectrograms or Mel-frequency Cepstral Coefficients (MFCCs), that can be obtained
from speech signals present a broader outlook on speech characteristics. These
handcrafted representations can be used to train relatively lightweight Neural Network
models of different architectures, such as Multilayer Perceptron (MLP), and
Convolutional Neural Networks (CNNs).

6 Eyben, Florian, et al. "The Geneva minimalistic acoustic parameter set (GeMAPS) for voice
research and affective computing." IEEE Transactions on Affective Computing 7.2 (2015): 190-
202.

25

D3.2 - XR2Learn enablers

- Figure 12. Approaches to Speech Emotion
Recognition.

Another family of approaches directly processing raw audio signals, also known as large
speech models (e.g., wav2vec2.07 and HuBERT8), have shown superior SER performance
in recent years. Nonetheless, they require much more computing power, sophisticated
approaches to pre-training, based on SSL frameworks, and large amounts of speech
data available for pre-training. Fortunately, open-source versions of these models are
available (e.g. via the PyTorch audio framework9), that have been pre-trained on large
general-purpose datasets with human speech. These representations can be re-used
to build task-specific emotion recognition models with SSL and/or subsequently
incorporate supervised classifiers10.

- Figure 13. Visualization of spectral representations.

7 Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech
representations." Advances in neural information processing systems 33 (2020): 12449-12460.
8 Hsu, Wei-Ning, et al. "Hubert: Self-supervised speech representation learning by masked
prediction of hidden units." IEEE/ACM Transactions on Audio, Speech, and Language Processing
29 (2021): 3451-3460.
9 https://pytorch.org/audio/stable/pipelines.html#module-torchaudio.pipelines
10 Pepino, Leonardo, Pablo Riera, and Luciana Ferrer. "Emotion Recognition from Speech Using
wav2vec 2.0 Embeddings." Proc. Interspeech 2021 (2021): 3400-3404.

https://pytorch.org/audio/stable/pipelines.html#module-torchaudio.pipelines

26

D3.2 - XR2Learn enablers

3.1.1.2. Open-source Datasets and Experimental Setup

Before integrating models into the proposed tools described above (Section 3), we
conducted a set of experiments validating the models from the literature on three
widely used open-source datasets, namely IEMOCAP11, RAVDESS12, and K-EmoCon13. It
is important to mention that all three datasets are available for non-commercial use
and research purposes only. Besides, none of these datasets have been collected in XR
environments.

The IEMOCAP dataset, recorded with 10 actors (5 males, 5 females) in 5 sessions,
contains more than 7,000 audio segments with an average length of approximately 8
seconds. The dataset is typically used with 4 distinct emotions (anger,
happiness/excitement, sadness, neutral). The distribution of classes is relatively
balanced. Normally, the models are evaluated on the dataset in a leave-one-session-
out cross-validation protocol, where each session is used for testing purposes once
and performance metrics are averaged over all 5 folds. The RAVDESS dataset (24
actors: 12 males, 12 females) contains 8 emotions (neutral, calm, happy, sad, angry,
fearful, disgust, surprised) with a dataset size of about 1400 samples. For this dataset,
we employ random hold-out sets (80% train / 10% validation / 10% test) based on the
actors. The emotions presented in the IEMOCAP and RAVDESS datasets were played
by actors in scripted and improvised discussions. These datasets also contain facial
expression modality in addition to speech.

The K-EmoCon dataset consists of untrimmed dialogues, including data from 32
participants (20 male, 12 female) that can be processed into approximately 1,000
samples of 10 seconds in length. The dataset contains different annotation types,
including (i) a two-dimensional affective model with arousal and valence scores
between 1 (very low) and 5 (very high); (ii) categorical emotional classes (cheerful,
happy, angry, nervous, sad) each scored between 1 (very low) and 5 (very high); and (iii)
Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP)14 where a single class from
engagement related categories (boredom, confusion, delight, engaged concentration,
frustration, surprise, or none) is selected. The latter annotation system, BROMP, is
closely related to education scenarios and derived from the Theory of Flow, the model
intended to be used in the XR2Learn project. However, the obtained BROMP
annotations are severely imbalanced, as shown in Figure 14, which brings an additional
challenge for models to classify these affective states. Apart from audio signals, this
dataset also contains visual data and bio-measurement signals. To elicit the emotions
above, the subjects (non-native English speakers) were asked to participate in debates
on sensitive political topics in English. In turn, the emotion annotations were obtained
via self and external assessment. For this dataset, the typical procedure is leave-one-
subject-out, where samples from each of the 32 subjects are subsequently used for
model evaluation (test set).

11 Busso, Carlos, et al. "IEMOCAP: Interactive emotional dyadic motion capture database."
Language resources and evaluation 42 (2008): 335-359.
12 Livingstone, Steven R., and Frank A. Russo. "The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North
American English." PloS one 13.5 (2018): e0196391.
13 Park, Cheul Young, et al. "K-EmoCon, a multimodal sensor dataset for continuous emotion
recognition in naturalistic conversations." Scientific Data 7.1 (2020): 293.
14 Ocumpaugh, Jaclyn. "Baker Rodrigo Ocumpaugh monitoring protocol (BROMP) 2.0 technical
and training manual." New York, NY and Manila, Philippines: Teachers College, Columbia
University and Ateneo Laboratory for the Learning Sciences 60 (2015).

27

D3.2 - XR2Learn enablers

- Figure 14. Distribution of annotations (adapted from
the K-EmoCon dataset paper).

In our preliminary research for Speech Emotion Recognition, we evaluated various
Neural Network (Deep Learning) architectures on IEMOCAP, RAVDESS, and K-EmoCon
using speech representations described in the previous section. Specifically, the input
representations of speech and implemented models used in the experiments are
described in Table 1. In particular, we implemented three methods based on
handcrafted features, including MLP based on eGeMAPS low level descriptors and one-
dimensional CNNs processing spectral representations of speech. Finally, we also
investigated two SSL architectures processing raw speech data. These models are two
versions, base and large, of the widely used wav2vec 2.0 neural network. In our
experiments, we used models that have been already pre-trained on large speech
dataset, namely LibriSpeech15, and available as open-source via torchaudio package.

15 Panayotov, Vassil, et al. "Librispeech: an asr corpus based on public domain audio books."
2015 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE,
2015.

28

D3.2 - XR2Learn enablers

- Table 1. Speech Input Data and Deep Learning
Models

Model
No.

Input Format Deep Learning Model /
Approach to Learning

Description

1 eGeMAPs
(Functional)

MLP The eGeMAPs functional features correspond to 88
features related to acoustics computed for the
whole input audio stream. These values are used as
inputs for a fully connected Neural Network, or
MLP, with 2 layers.

2 Spectral
(mel-scale
spectrograms)

CNN One-dimensional Convolutional Neural Network
with three layers and a Linear Classifier applied to
mel-scale spectrograms extracted from raw
speech.

3 Spectral
(MFCC)

CNN One-dimensional Convolutional Neural Network
with three layers and a Linear Classifier applied to
MFCCs extracted from raw speech.

4 Raw Audio wav2vec2.0 base (SSL)
+ pointwise CNN +
linear classifier

Apply the open-source base wav2vec 2.0 speech
model pre-trained on LibriSpeech dataset using
SSL to pre-processed speech. The obtained
features are then passed to a pointwise CNN with a
linear classifier.

5 Raw Audio wav2vec2.0 large (SSL)
+ pointwise CNN +
linear classifier

Apply the open-source large wav2vec 2.0 speech
model pre-trained on the LibriSpeech dataset using
SSL to pre-processed speech. The obtained
features are then passed to a pointwise CNN a
linear classifier.

3.1.1.3. Evaluations

We evaluated the proposed models on three datasets that we described earlier:
IEMOCAP, RAVDESS and K-EmoCon. Table 2 presents the quantitative results of the
conducted experiments. The metric used to assess the performance of models is the
average (macro) F1-score (%).

- Table 2. F1-scores (%) for the speech emotion
recognition task.

Model No. IEMOCAP RAVDESS K-EmoCon
(arousal-valence)16

K-EmoCon (BROMP)

1 48.1 29.5 38.6 11.7

2 52.09 30.7 41.61 11.6

3 50.56 40.9 31.65 11.7

4 60.65 70.4 34.2 11.7

5 64.46 72.4 35.87 11.7

As can be observed in Table 2, the largest model (model no.5, wav2vec 2.0 large)
significantly outperforms all the other topologies on IEMOCAP and RAVDESS datasets,
two datasets widely used in research on speech emotion recognition. Nevertheless, the

16 The performance is averaged over two-class (high, low) arousal and valence classification
scores.

29

D3.2 - XR2Learn enablers

performance on the K-EmoCon dataset (arousal-valence scales) is better for the model
based on mel-scale spectrograms. Additionally, it is evident that all models perform
remarkably low on BROMP annotations. Most probably, this issue arises due to the
extremely unbalanced data.

While the emotion recognition rate is a key factor for selecting an architecture, in real-
world inference settings, it is also important to consider other aspects related to model
efficiency. While large speech models can significantly outperform other topologies,
they are associated with higher costs and requirements for fine-tuning and higher
latency during inference. In Table 3, the metrics related to computation costs and
latency of the evaluated models are presented.

- Table 3. Computation efficiency of the Deep
Learning models. Training and inference time are
presented for the RAVDESS dataset. The training
time is reported for the Nvidia Titan V GPU. The
inference time is reported for the CPU (Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10GHz).

Model No. Number of parameters
(millions)

Training time per epoch17
(seconds)

Average inference time
per instance (seconds)

1 0.03 0.35 0.0042

2 0.06 0.5 0.0051

3 0.34 0.4 0.0047

4 94.5
(without pre-trained part:

0.13)

14.8 0.3

5 315
(without pre-trained part:

0.17)

30.9 0.575

As anticipated, large speech models demand considerable computational resources.
They present higher requirements to GPU resulting in training (or fine-tuning) times
that are several orders of magnitude longer. They also exhibit slower inference
compared to the models based on handcrafted features.

3.1.1.4. Challenges and Limitations

Based on the analysis of the literature and conducted experiments, the following
challenges and limitations have been highlighted when operating with speech modality:

- While speech contains rich information about human emotions, to the best of
our knowledge, there are no datasets with speech collected in natural education
settings. Furthermore, most of the datasets containing speech present sets of
emotions that are not related to user engagement. In the conducted
experiments, one dataset with education-related BROMP annotations have been
used. Nevertheless, it has been found that regardless of applied methods, the
emotion recognition performance is very low. This can be explained by the
quality of collected data and annotations, i.e. emotion elicitation, annotation

17 RAVDESS training set contains approximately 1200 samples. Thus, an epoch is one iteration
of training through 1200 instances.

30

D3.2 - XR2Learn enablers

procedures, and class-imbalance. Thus, this challenge can be addressed by a
dedicated data collection pilot, or methodology to map standard models of
emotion representation to education-related annotations (e.g. theory of flow).

- The large speech models typically show remarkable performance compared to
models based on handcrafted features. Nevertheless, fine-tuning such models
is significantly more computationally expensive compared to other approaches.
Besides, their latency is considerably higher compared to the methods based on
handcrafted features. If required, the latency of the models can be lowered by
using contemporary model compression techniques, such as quantization and
knowledge distillation. Also, the deployment architecture for training and
inference components can be modularized to deploy different components in
distinct machines according to how much computational resources the
component requires.

3.1.2. Emotion Recognition through Bio-measurements

Perceived emotions trigger physiological responses in the body, such as changes in
heart rate, skin conductance, and respiration rate. Moreover, such changes can be
measured by wearable physiological sensors that have become more accessible in
recent years. Nevertheless, collecting some physiological responses can require
expensive intrusive equipment and a complex environment for accurate data collection,
which is not always feasible and can be challenging to integrate with commercial VR
educational scenarios.

Electrodermal activity (EDA) signals, also known as Galvanic Skin Response (GSR), are
recorded by sensors that measure skin conductance changes, which can indicate
emotional arousal levels. Heart rate variability is another source of information that
can be used to reflect the changes in the affective state. In particular, an
Electrocardiogram (ECG) is a robust heart rate monitor that requires connecting
multiple electrodes to subjects' chests, which is hard to achieve beyond the laboratory
environment. A less intrusive and more lightweight measurement of heart rate
variability is Blood Volume Pulse (BVP).

Skin temperature (SKT) is also used for affect recognition, although several factors
could influence it. It typically is a weaker signal compared to EDA and BVP. Wearable
devices, including commercial-grade and research-grade options such as smart
watches, bracelets, and rings, can record EDA, BVP, and SKT data through integrated
electrodes. The EDA, BVP, and SKT data are commonly used to predict emotional
arousal levels, signaling the intensity of the experienced affective states, and detecting
stress and excitement. We visualize examples of data recordings corresponding to EDA
and BVP signal obtained from the WESAD dataset in Figure 15.

31

D3.2 - XR2Learn enablers

- Figure 15. Signal recordings from EDA and BVP
sensors collected from one participant in the

WESAD dataset.
Unlike the other physiological sensors, Electroencephalography (EEG) signals can be
used to evaluate two-dimensional affect recognition, i.e., both arousal and valence
levels. However, EEG devices require complex installation and, ideally, laboratory
settings to collect accurate data.

3.1.2.1. Learning Representations from Bio-measurements

In recent years, Self-Supervised Learning has been applied to emotion recognition to
learn unimodal features from different modalities. Experiments conducted on various
modalities, such as ECG data18, EDA, BVP, and SKT data19, show that unsupervised
representation learning is a promising direction that allows Deep Learning models to
learn robust unimodal representations from unlabeled data. Nevertheless, unlike in
speech emotion recognition, there are no publicly available pre-trained models for
these data modalities. Thus, the SSL frameworks should be tailored individually for
bio-measurement data.

3.1.2.2. Open-source Datasets and Experimental Setup

In our preliminary experiments, we used WESAD20 and K-EmoCon datasets (introduced
earlier for speech) that include bio-measurement data obtained via various wearable
sensors. In particular, we focus on less intrusive sensors presented in these datasets
that were installed in wristbands. The WESAD dataset is collected from 15 subjects (12
males and 3 females), whereas the annotations are made based on the stimuli the
subjects have received. Specifically, a three-class version of the dataset contains
neutral, amusement, and stress classes. The elicitation materials were the Trier Social

18 Sarkar, Pritam, and Ali Etemad. "Self-supervised ECG representation learning for emotion
recognition." IEEE Transactions on Affective Computing 13.3 (2020): 1541-1554.
19 Dissanayake, Vipula, et al. "Sigrep: Toward robust wearable emotion recognition with
contrastive representation learning." IEEE Access 10 (2022): 18105-18120.
20 Schmidt, Philip, et al. "Introducing wesad, a multimodal dataset for wearable stress and affect
detection." Proceedings of the 20th ACM international conference on multimodal interaction.
2018.

32

D3.2 - XR2Learn enablers

Stress Test21 for the stress state, and video clips for the amusement state. The K-
EmoCon dataset has been previously discussed in the context of audio modality. Both
datasets used Empatica E422 to collect EDA, SKT, and BVP data. As stated on the
Empatica website, the E4 wristband is no longer available for purchase.

In our experimentation, we have implemented 3 models, described in Table 4, for bio-
measurement data (EDA, BVP, SKT). All models are based on Convolutional Neural
Networks, which are commonly used to process multivariate time-series data.
Nevertheless, the difference between the proposed models resides in the methodology
employed for their training. In particular, the first model is a CNN train from scratch in
supervised settings, whereas the remaining models are first pre-trained using state-
of-the-art Self-Supervised Learning frameworks (SimCLR and VICReg) that we adapted
to the problem of emotion recognition.

- Table 4. Deep Learning Models for bio-measurement
data.

Model
No.

Input Format Deep Learning Model /
Approach to Learning

Description

1 Raw signals Supervised CNN Convolution Neural Network (CNN) with 3 layers
and a fully connected classification layer. Applied
to raw multi-channel bio-measurement signals.
Each channel corresponds to a certain device (EDA,
BVP, SKT). The signals are re-sampled to the same
frequency, normalised to zero mean and unit
variance per channel and segmented into 10-
second time intervals with a 5-second overlap.

2 Raw signals SimCLR pre-training for
CNN

CNN architecture (same as in model 1), pre-trained
with the SimCLR23 contrastive SSL framework.

3 Raw signals VICReg pre-training for
CNN

CNN architecture (same as in model 1), pre-trained
with the VICReg24 SSL framework.

3.1.2.3. Evaluations

The described models have been tested on two datasets and two protocols per
dataset. Specifically, we used 3-class (stress/neutral/amused) and 2-class (stress/no-
stress) protocols from WESAD dataset to train out models and K-EmoCon dataset
previously used for SER experiments. Table 5 presents the quantitative results of the
conducted experiments. The metric used to assess the performance of models is the
average (macro) F1-score.

21 Kirschbaum, Clemens, Karl-Martin Pirke, and Dirk H. Hellhammer. "The ‘Trier Social Stress
Test’–a tool for investigating psychobiological stress responses in a laboratory setting."
Neuropsychobiology 28.1-2 (1993): 76-81.
22 https://www.empatica.com/store/e4-wristband/
23 Chen, Ting, et al. "A simple framework for contrastive learning of visual representations."
International conference on machine learning. PMLR, 2020.
24 Bardes, Adrien, Jean Ponce, and Yann Lecun. "VICReg: Variance-Invariance-Covariance
Regularization For Self-Supervised Learning." ICLR 2022-International Conference on Learning
Representations. 2022.

https://www.empatica.com/store/e4-wristband/

33

D3.2 - XR2Learn enablers

- Table 5. F1-scores (%) for Emotion Recognition using
bio-measurement signals.

Model No WESAD
(3-class)

WESAD
(stress / no-stress)

K-EmoCon (arousal-
valence)25

K-EmoCon
(BROMP)

1 69.1 89.4 41.6 11.9

2 67.7 91.0 43.1 11.8

3 67.4 90.1 39.98 11.7

As can be seen, all implemented models show an impressive performance for
distinguishing stress episodes in subjects on the WESAD dataset. Nevertheless, the
performance drops significantly when a third amusement class is introduced. This
could have happened due to a number of reasons. First, the authors of the WESAD
dataset used stimuli for emotion elicitation and annotation. For example, to provoke
emotion, an amusing video has been shown to the participants and the authors
assumed that the subjects felt amused while watching the video. Another reason might
be related to the fact that bio-measurements reflect changes in arousal level, whereas
they are not strong markers to estimate valence levels. To further illustrate this issue
we visualize the representations that model 1 learnt for input data in two-dimensional
space by using the t-SNE26 dimensionality reduction technique. The t-SNE projections
are shown in Figure 16. As can be seen, the models struggle to distinguish between
amusement and neutral (baseline) classes.

- Figure 16. Representations of the instances in the
WESAD dataset projected onto two-dimensional
space with t-SNE. Each point corresponds to a

separate bio-measurement recording.
For the K-EmoCon dataset, the proposed models show the performance comparable
to performance of speech-based models based on spectrograms. For the education
related BROMP annotations, the proposed models also show significantly lower
performance, due to the issue with extreme data imbalance.

25 The performance is averaged over two-class (high, low) arousal and valence classification
scores.
26 Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of
machine learning research 9.11 (2008).

34

D3.2 - XR2Learn enablers

In Table 6, the metrics related to computation costs and latency of the evaluated
models are presented. As can be seen, the pre-training does not affect the inference
time. However, more resources are needed for the pre-training stage itself.

- Table 6. Computational efficiency of the Deep
Learning models for emotion recognition using bio-

measurements. Training and inference time are
presented for the WESAD dataset. For SSL models
(2, 3), pt and ft refer to pre-training and fine-tuning
stages. Inference times during pre-training are not

applicable (N/A), as the inference is performed with
the fine-tuned model. The training time is reported

for Nvidia Quadro RTX-5000 GPU. The inference time
is measured on CPU.

Model No. Number of parameters for
training (millions)

Training time per epoch
(seconds)

Inference time per
example (seconds)

1 0.316 2 0.014

2: pt 1.8 10 N/A

2: ft 0.316 2 0.014

3: pt 1.8 8 N/A

3: ft 0.316 2 0.014

3.1.2.4. Challenges and Limitations

The following challenges and limitations were identified in the research phase with
bio-measurement data:

- One of the key technical challenges in developing emotion recognition systems
using bio-measurements is due to the wide variety of devices available on the
market. Each device generates input signals with unique characteristics and
formats, which makes it difficult to develop a universal system. Unlike audio
waveforms, bio-measurement signals are recorded using various physiological
sensors with different frequencies and sensitivities, which are dependent on the
device used for data collection. Furthermore, there is no industry-standard
wearable device, which means that the developed components should be
flexible enough to allow for the quick and straightforward development of add-
ons to process signals from different devices.

- Most of the datasets present sets of emotions that are not related to user
engagement. Whereas these datasets can be exploited to pre-train Deep
Learning models, annotated data needs to be collected for model fine-tuning
using emotion model engagement, such as the Theory of Flow.

- Machine and Deep Learning models’ performance using bio-measurement
signals might not be as accurate compared to the performance of models based
on facial expressions and speech. This is due to the fact that such physiological
responses, as EDA and BVP, have been suggested as a valuable physiological
indicator mainly for depicting emotional arousal through various methods of
emotion elicitation27 and might not reflect the valence dimension of emotions.

27 Picard, Rosalind W., Szymon Fedor, and Yadid Ayzenberg. "Multiple arousal theory and daily-
life electrodermal activity asymmetry." Emotion review 8.1 (2016): 62-75.

35

D3.2 - XR2Learn enablers

In other words, these signals are not considered as a strong marker for
identifying positivity or negativity of certain emotions, but only reflecting their
intensity.

- Emotion elicitation and data annotation are challenging aspects that should be
carefully considered when building an emotion recognition system. As shown in
the experiments with the WESAD dataset, this might have a significant impact
on the quality of data and annotations. When developing a data collection tool,
it is very important to carefully plan what emotions have to be elicited and how
they can be annotated (e.g. self-annotation, external annotation) to reduce the
number of incorrectly labeled instances.

3.1.3. Emotion Recognition using Body Tracking

Emotion recognition through body tracking and body motion, a pivotal area in affective
computing, employs sophisticated algorithms and sensor technologies to decode non-
verbal emotional cues. Algorithms such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), eXtreme Gradient Boosting (XGBoost), and Long
Short-Term Memory (LSTM) play a crucial role in processing data captured by motion
capture sensors like Kinect28, Vicon29, and Intel RealSense30. These sensors are adept
at recording detailed body movements for computational analysis. For instance, the
study by Kleinsmith et al.31 exemplifies the use of body posture as a reliable indicator
of emotional states. This technology's applications are vast, extending from virtual
reality user experience enhancements to mental health care improvements, as
explored in the work by Karg et al.32. Joint Angles, Joint Displacement, Joint Velocity
and Acceleration, Spatial Position of Joints, Symmetry and Asymmetry in Movements,
Sequential Patterns of Joint Movements, and Range of Motion are typically used for
feature extraction purposes in emotion recognition from body motion33 34. The
continuous evolution in this domain is set to significantly transform human-computer
interaction, making it more intuitive and empathetic.

3.1.3.1. Features and Classifiers

Fusing statistical features extracted from the spatial domain, Fourier transform,
wavelet transform, and Hilbert transform could provide acceptable results. Features
such as mean, median, standard deviation, variance, skewness, kurtosis, min value,
max value, sum value, elements, peaks, sum of peaks, and percentiles are mentionable

28 https://learn.microsoft.com/en-us/azure/kinect-dk/windows-comparison
29 https://www.vicon.com/
30 https://www.intelrealsense.com/

31 Kleinsmith, Andrea, P. Ravindra De Silva, and Nadia Bianchi-Berthouze. "Recognizing emotion
from postures: Cross-cultural differences in user modeling." User Modeling 2005: 10th

International Conference, UM 2005, Edinburgh, Scotland, UK, July 24-29, 2005. Proceedings 10.
Springer Berlin Heidelberg, 2005.

32 Karg, Michelle, et al. "Body movements for affective expression: A survey of automatic
recognition and generation." IEEE Transactions on Affective Computing 4.4 (2013): 341-359.

33 Ahmed, Ferdous, ASM Hossain Bari, and Marina L. Gavrilova. "Emotion recognition from body
movement." IEEE Access 8 (2019): 11761-11781.

34 Roether, Claire Louise. The Expression of Emotions through Full-body Movement: Features
and Asymmetry. Diss. 2010.

https://learn.microsoft.com/en-us/azure/kinect-dk/windows-comparison
https://www.vicon.com/
https://www.intelrealsense.com/

36

D3.2 - XR2Learn enablers

as effective. For this type of feature extraction, LSTM35, 1-D CNN36, Gradient Boosting,
XGBoost, and Decision Tree classifiers return satisfactory results. It has been reported
that additionally applying feature selection by Principal Component Analysis (PCA),
Lasso Regularization, Variance Threshold, F-test, Tree-based Feature Selection,
Neighborhood Components Analysis (NCA), and feature importance by eXplainable
Artificial Intelligence (XAI) algorithms such as SHapley Additive exPlanations (SHAP)
could remove outliers and improve the accuracy. However, the XAI approaches are
more complex and costly.

3.1.3.2. Open-source Datasets

It is important to mention that the datasets available in open-source contain a more
extensive set of body keypoints, whereas the commercial XR environment allows to
track a limited set of markers. Nevertheless, for the proof of concept, we will use the
full set of keypoints in the subsequent experiments.

In our preliminary experiments, we used three motion capture datasets, starting with
the Xia37 dataset. The Xia dataset comprises approximately 11 minutes of motion data,
equivalent to 79,829 frames (572 samples) in BioVision Hierarchy (BVH38) format and
38 joints. The motion data was captured using a Vicon optical motion capture system,
employing eighteen 120 Hz cameras. The dataset includes a wide range of human
actions such as walking, running, jumping, kicking, punching, and transitions between
these behaviors. Each action is represented in eight distinctive styles: neutral, proud,
angry, depressed, strutting, childlike, old, and sexy. All joint angles in the dataset,
except for the root joint, are converted to Cartesian parameters using the exponential
map parameterization. This ensures proper manipulation of the joint-angle quantities
essential for style translation. Figure 17 depicts some samples generated by us from
the Xia dataset in various actions and emotions using BVHView39 software in Windows
OS.

35 da Silva, Rogério E., Jan Ondrej, and Aljosa Smolic. "Using LSTM for Automatic Classification
of Human Motion Capture Data." VISIGRAPP (1: GRAPP). 2019.

36 Li, Hai, Hwa Jen Yap, and Selina Khoo. "Motion classification and features recognition of a
traditional Chinese sport (Baduanjin) using sampled-based methods." Applied Sciences 11.16
(2021): 7630.

37 Xia, Shihong, et al. "Realtime style transfer for unlabeled heterogeneous human motion." ACM
Transactions on Graphics (TOG) 34.4 (2015): 1-10.

38 https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html
39 https://github.com/orangeduck/BVHView

https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html
https://github.com/orangeduck/BVHView

37

D3.2 - XR2Learn enablers

- Figure 17. Generated visual motion caption samples
from Xia dataset in different actions and emotions

Edinburgh University published multiple motion capture datasets40 in different actions
and emotions namely, edinlocomotion, edinkinect, edinxsens, edinmisc, edinpunching,
and edinterrain which here, we use edinlocomotion41. This is a database containing long
clips of locomotion data, including running, walking, jogging, and various sidestepping
motions. It contains around 20 minutes of raw data and is not segmented into
individual strides. Each data point in the dataset is enhanced with additional scalar
control signals, including the turning speed, forward velocity, and sideways velocity of
the body. These signals provide more context to the motion data and allow for more
detailed analysis and application. Every frame of a sequence in the dataset represents
21 joint positions in the local Cartesian space, with the origin at the hip of the character.
However, for our experiment, we used the 38-joint version of it (47 samples) which
was retargeted by Holden (2016)42. Figure 18 illustrates the body hierarchy of one of
the walking samples from this dataset in the BVHHacker tool43.

40 de la Cruz, Vladimir. Human motion convolutional autoencoders using different rotation
representations. Diss. Concordia University, 2019.

41 Komura, Taku, et al. "A recurrent variational autoencoder for human motion synthesis." The
28th British Machine Vision Conference. 2017.

42 Holden, Daniel, Jun Saito, and Taku Komura. "A deep learning framework for character motion
synthesis and editing." ACM Transactions on Graphics (TOG) 35.4 (2016): 1-11.

43 https://www.bvhacker.com/

38

D3.2 - XR2Learn enablers

- Figure 18. A walking body hierarchy sample from
edinlocomotion dataset in

- BVHHacker Tool

The BFA dataset was introduced by Aberman (2020)44 for two purposes; retargeting
and motion style transfer. Retargeting means changing the number of positions of
joints from one character to another and motion style transfer means transferring the
style of different subjects’ actions to each other. For instance, to transfer “angry
walking” style from one subject to another person’s body motion. In this work, the
motion style transfer dataset was used. This dataset consisted of 33 long motion
capture clips in 16 styles and emotions. Figure 19 represents the t-SNE plot of these
styles and emotions (adopted from their paper). Table 7 represents our experimental
results on the mentioned three datasets using different extract features. Five other
body motion datasets are considered for the future experiments which are MPI45,
CMU46, 100 Style Dataset47, KDAEE48, and Bandai-Namco Research Motion dataset49.

- Figure 19. t-SNE plot of BFA dataset

44 Aberman, Kfir, et al. "Unpaired motion style transfer from video to animation." ACM
Transactions on Graphics (TOG) 39.4 (2020): 64-1.

45 Volkova, Ekaterina, et al. "The MPI emotional body expressions database for narrative
scenarios." PloS one 9.12 (2014): e113647.

46 De la Torre, Fernando, et al. "Guide to the carnegie mellon university multimodal activity
(cmu-mmac) database." (2009).

47 Mason, Ian, Sebastian Starke, and Taku Komura. "Real-time style modelling of human
locomotion via feature-wise transformations and local motion phases." Proceedings of the ACM
on Computer Graphics and Interactive Techniques 5.1 (2022): 1-18.
48 Zhang, Mingming, et al. "Kinematic dataset of actors expressing emotions." Scientific data 7.1
(2020): 292.

49 Kobayashi, Makito, et al. "Motion Capture Dataset for Practical Use of AI-based Motion Editing
and Stylization." arXiv preprint arXiv:2306.08861 (2023).

39

D3.2 - XR2Learn enablers

- Table 7. Experiment accuracy results on three
mentioned datasets (best results are reported)

Dataset Data Classifier Train Test Features Classes

Xia Feature
Extracted

Gradient
Boosting

100 % 66 % Statistical features from
the Spatial and Wavelet
domain

4 emotions of Angry,
Depressed, Neutral,
and Proud

Raw Gradient
Boosting

100 % 89 % Interpolated raw data
(equal frames)

Edin
Locomotion

 Decision
Tree

100 % 61 % Statistical features from
the Spatial, Fourier, Short
Time Fourier Transform,
Wavelet, and Hilbert
transform

7 actions of Jog, Jog
side step, Run, Run
side step, Transition,
Walk, Walk side step

Raw Gradient
Boosting

100 % 77 % Interpolated raw data
(equal frames)

BFA

Feature
Extracted

Gradient
Boosting

100 % 80 % Statistical features from
the Spatial and Wavelet
domain

5 emotions of Angry,
Depressed, Neutral,
Proud, and Happy

Raw Gradient
Boosting

100 % 80 % Interpolated raw data
(equal frames)

- Challenges and
Limitations

40

D3.2 - XR2Learn enablers

Based on our research, a few challenges and limitations50 51 52 have been found. Some
of these challenges are summarized below:

● Complexity of Emotion Representation: Human emotions are complex and
multidimensional. They are not only expressed through body movements but
also through facial expressions, tone of voice, and context. This complexity
makes it difficult to accurately interpret emotions based solely on body motion
data.

● Individual Variability: There is significant variation in how different individuals
express emotions through their body movements. What might be a sign of
happiness in one person could be a sign of discomfort in another. This individual
variability requires personalized models, which can be challenging to develop
and scale.

● Cultural Differences: Body language can vary significantly across cultures. For
instance, gestures or postures that indicate a certain emotion in one culture
might have a completely different meaning in another. This poses a challenge
for creating universally applicable emotion recognition systems.

● Real-Time Processing Constraints: Processing body motion data in real-time for
immediate emotion recognition can be computationally demanding, especially
when dealing with high-resolution data or complex algorithms. This poses a
challenge for implementation in real-world, resource-constrained environments.

● Contextual Relevance: Emotions are often context-dependent. Without
understanding the context in which a body movement occurs, it can be difficult
to accurately interpret the emotion it represents. This limitation can lead to
misinterpretations in emotion recognition.

● Integration with Other Modalities: To improve accuracy, emotion recognition
systems often need to integrate body motion data with other modalities like
voice. However, effectively integrating and synchronizing these different data
types can be technically challenging.

Also, some limitations are:

● Data Quality and Availability: High-quality, comprehensive datasets are crucial
for training accurate models. However, collecting such datasets is challenging
due to privacy concerns, the need for a diverse range of participants, and the
complexity of accurately annotating emotional states.

● Additionally, emotion recognition through body tracking faces two main
challenges: there's not enough data available, particularly in educational
settings, and for emotions tied to the concept of flow. Collecting detailed and
varied data in schools is difficult due to privacy concerns and practical issues,
while the unique and personal nature of flow states complicates data collection.

50 Sapiński, Tomasz, et al. "Emotion recognition from skeletal movements." Entropy 21.7 (2019):
646.

51 Riemer, Hila, et al. "Emotion and motion: Toward emotion recognition based on standing and
walking." Plos one 18.9 (2023): e0290564.

52 Ahmed, Ferdous, ASM Hossain Bari, and Marina L. Gavrilova. "Emotion recognition from body
movement." IEEE Access 8 (2019): 11761-11781.

41

D3.2 - XR2Learn enablers

These limitations prevent the technology's ability to accurately identify emotions
in these specific contexts.

● Sensor Limitations and Accuracy: The accuracy of body tracking technologies,
such as motion capture systems or wearable sensors, can vary. Factors like
lighting conditions, sensor placement, and environmental interference can affect
the quality of the data collected, leading to less accurate emotion recognition.

● Ethical and Privacy Concerns: The intrinsic privacy and ethical issues associated
with monitoring and analyzing body movements, particularly in sensitive or
private settings.

● Lack of Standardized Benchmarks: The absence of standardized benchmarks
and evaluation metrics in the field, which hampers the comparison of different
approaches and the measurement of progress.

3.2. TRAINING TOOLS

3.2.1. Technical Documentation

3.2.1.1. Description

Training tools involve Enablers 2, 3, and 4 with related components, a total of five tools,
for pre-training and fine-tuning models used in XR2Learn. Each tool is a modularized
component with an isolated environment and dependencies that can be used
separately, in combination, or as an end-to-end system (together with the Command-
Line Interface – CLI).

The Training tools’ architecture was designed to deploy each modality separately, e.g.,
audio and bio measurements (BM) modalities, to better manage and isolate the
different dependencies per modality. Each component is deployed using Docker to
ensure easy-to-use components, reproducible development and deployment
environments, and consistent results. Thus, the Training tools support cross-platform
use, i.e., Windows, Linux and macOS.

Pre-processing: Pre-process raw data into an organized time window of data and
labels to be used by the other components.

Handcrafted Features Extraction: Extracts features derived from the raw data type’s
properties instead of using Machine Learning for feature extraction. This component
can be considered as part of Enabler 2 or 3 depending on the use-case. Specifically,
generated handcrafted features can be used as inputs for both SSL (Enabler 2) and
Supervised Training (Enabler 4). In other words, our architecture allows a user to decide
whether they would like to pre-train the encoder with SSL or use it as a final
representation for Supervised Learning.

Self-Supervised Learning (SSL) Training (pre-train): Pre-train an encoder (Enabler 2),
with no use of labels.

Features Extraction: Uses an encoder to generate features (Enabler 3).

Supervised Learning Training (fine-tuning): Trains a classification model (Enabler 4)
utilizing labels.

42

D3.2 - XR2Learn enablers

Figure 20 below depicts a diagram of the five components from the Training domain
and their communication. Outputs produced by each component in the Training domain
can be accessed by a user directly, and used as input by Inference components.

- Figure 20. Training domain architecture with its
components connections.

3.2.1.2. Prerequisites

The Training Tools support the three main Operational Systems (OS): Linux, macOS,
and Windows, as well as CPU and GPU use.

The two pre-requisites are:

- Docker53 installed (or Docker-Nvidia54 if GPU use is required)

- Python 3.1055 installed

3.2.1.3. Installation

53 https://docs.docker.com/engine/install/
54 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
55 https://www.python.org/downloads/

https://docs.docker.com/engine/install/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://www.python.org/downloads/

43

D3.2 - XR2Learn enablers

1. Download the latest version of the code at:

https://github.com/XR2Learn/Enablers-2-4-Training/tags

2. Unzip the file

3. Navigate to the root directory of the downloaded project, and from the root
repository, run the command to build the docker images

a. docker compose build

4. If using GPU, also build the docker images for GPU

a. docker compose -f docker-compose.yml -f docker-compose-gpu.yml build
(for Windows systems)

b. ./compose-gpu.sh build (for Unix based systems, i.e., Linux and MacOS)

3.2.1.4. Basic User manual

The enablers were designed to be used with Enablers-CLI, a command-line interface
that simplifies the use of enablers, so the easiest way to access the Enablers’
functionalities is by using Enablers-CLI. Please refer to Section 3.5 for information on
how to use CLI. However, if changing or expanding the enablers’ functionalities is
required, it is possible to access each component using docker commands, as
exemplified below. Thus, the instructions described below are focused on running the
enablers for a development environment.

A “configuration.json” file is required to provide the enablers with the necessary
specifications for running. A default version of “configuration.json” is provided and can
be changed by the user.

1. Run a docker image:

a. docker compose run --rm <service-name>

Note: Service names can be found in the “docker-compose.yml” file in the project’s root
folder. Each modality, i.e., audio, bio-measurements (bm), body movements, are
deployed in separated docker containers and their service name follow the structure:

1. pre-processing-<modality>
2. handcrafted-features-generation-<modality>
3. ssl-<modality>
4. ssl-features-generation-<modality>
5. ed-training-<modality>

There is an additional script to run all the docker images from a given modality, which
uses the available ‘configuration.json’ file:

1. For Unix-based OS, MacOS and Linux
a. ./run_all_dockers.sh

2. For Windows:
a. ./run_all_dockers.ps1

Additional Useful Commands:

https://github.com/XR2Learn/Enablers-2-4-Training/tags

44

D3.2 - XR2Learn enablers

1. Build a specific docker image
a. docker compose build <service-name>

2. Run a specific docker image
a. docker compose run --rm <service-name>

3. Run a specific docker image providing Environment Variables in the format
KEY=VALUE:

a. KEY=VALUE docker compose run --rm <service-name>

4. Run a specific docker image with shell entry point
a. docker compose run --rm <service-name> \bin\bash

All the outputs produced by any component in the Training domain are saved and can
be accessed in the folder ./outputs.

3.2.1.5. Open-source Code

The Training tools can be found in the project’s GitHub repository at:

- https://github.com/XR2Learn/Enablers-2-4-Training

LICENSE

The Training tools code is shared under a dual-licensing model. For non-commercial
use, it is released under the MIT56 open-source license. A commercial license is
required for commercial use.

The handcrafted features extraction components for the audio modality is shared for
non-commercial use only, to comply with OpenSMILE57 license.

More details on the End User License Agreement (EULA) can be found be found at:

https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/LICENSE

Available versions

- Table 8. Training tools enablers and components
released versions and date

Version Release Date

v0.1.0 2023-10-19

v0.2.0 2023-11-14

v0.3.0 2023-12-06

v0.3.1 2024-01-19

v0.3.2 2024-02-15

All the released versions can be accessed at: https://github.com/XR2Learn/Enablers-
2-4-Training/tags

56 https://opensource.org/license/mit/
57 https://github.com/audeering/opensmile-python/tree/main

https://github.com/XR2Learn/Enablers-2-4-Training
https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/LICENSE
https://github.com/XR2Learn/Enablers-2-4-Training/tags
https://github.com/XR2Learn/Enablers-2-4-Training/tags
https://opensource.org/license/mit/
https://github.com/audeering/opensmile-python/tree/main

45

D3.2 - XR2Learn enablers

Table 8 lists the Training tools released versions with date. A description of the main
changes in the project’s versions can be found at:
https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/CHANGELOG.md

3.2.2. Enabler 2: Emotion Representation Learning Tool

3.2.2.1. Description

Enabler 2 includes the components for pre-processing, handcrafted feature extraction,
and the tool for pre-training Deep Learning emotion recognition models. As stated
before, emotion representations generated by pre-training models will be used for
supervised training, and the different modalities for each component are deployed
separately.

The pre-processing component is responsible for processing the raw input files into
organized, structured data, generating CSV files in which each row represents an
example of the given data with the corresponding label. This component is also
responsible for splitting the input data into train, validation and test sets in a
consistent approach to prevent data leakage across the different enablers’ pipelines.

The handcrafted features component is responsible for extracting handcrafted
features, i.e., numerical representation derived from the raw input data’s properties.
This component uses the input data already pre-processed and split into train,
validation and test sets. For the audio modality, MFCCs and eGEMAPS handcrafted
feature extraction are supported.

The SSL component aims to pre-train Deep Learning encoders for emotion recognition
and learn representations that can be later used in Enablers 3 and 4. The current
pipeline supports the SimCLR contrastive learning framework58 utilizing augmentations
of input data. This framework and augmentations can be applied on top of raw speech
signals as well as handcrafted features (e.g., spectrograms for the audio modality) to
pre-train architectures of deep learning models previously described in Section 3.1.1.2
(Table 1). This SSL pipeline allows users to pre-train Deep Learning architectures of
their choice, taking into account their computational capabilities. Meanwhile, users can
choose not to pre-train their own model and fine-tune the open-source pre-trained
models (currently, base and large versions of wav2vec 2.0 are supported) within
Enabler 4. In this case, as discussed in Section 3.1.1.3 (Table 3), more powerful
equipment (GPUs) are needed. In the second sub-phase of Task 3.2, we plan to upgrade
the current pre-training pipelines and extend them to other modalities (e.g., bio-
measurements).

3.2.2.2. Basic User manual

There are two approaches to run Enabler 2 directly: using a docker image or a local
run.

1. For Docker running:
a. Running with CPU

i. docker compose run --rm ssl-<modality> (for running with CPU)
b. Running with GPU

58 Chen, Ting, et al. "A simple framework for contrastive learning of visual representations."
International conference on machine learning. PMLR, 2020.

https://github.com/XR2Learn/Enablers-2-4-Training/blob/master/CHANGELOG.md

46

D3.2 - XR2Learn enablers

i. ./compose-gpu.sh run --rm ssl-<modality> (for Unix based OS, i.e.
MacOS and Linux)

ii. docker compose -f docker-compose.yml -f docker-compose-gpu.yml run

–-rm ssl-<modality> (for Windows)
2. For local running:

a. Download the specific component from the Training tools repository (e.g.,
SSL_Training/SSL_Audio_Modality)

b. Prepare the virtual environment (Create and activate virtual environment
with venv).

i. python -m venv ./venv

ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt (for running with CPU)
ii. pip install -r requirements-gpu.txt (for running with CUDA)

d. Change the “configuration.json” file according to the desired use-case
e. Run the script

i. python pre-train.py

(Optional) Running Handcrafted Feature Extraction component can also be done locally
or using a docker image.

1. For Docker running:

docker compose run --rm handcrafted-features-generation-<modality>

 2. For local running:

a. Download the specific component from the Training tools repository (e.g.,
Handcrafted_Features_Extraction/Handcrafted_Features_Extraction_Audio_m
odality)

b. Prepare the virtual environment (Create and activate virtual environment with
venv).

i. python -m venv ./venv
ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt

d. Change the “configuration.json” file according to the desired use-case
e. Run the script

i. python generate_features.py

3.2.3. Enabler 3: Tools for Using Emotion Representations

3.2.3.1. Description

Enabler 3 involves the tool for using pre-trained models in order to generate
representations (feature extraction). This component uses a pre-trained model, trained
by the Enabler 2 component or a customized pre-trained model provided by the user,
to compute features for a given modality.

The functionality of this component is a crucial part of deploying an Inference system
(Section 3.3), i.e., utilizing the pre-trained models to generate feature representations
of the input data. These representations can later be used to train and utilize an
emotion classification model within the supervised training component (Enabler 4;
Section 3.2.4) and the Inference tool (Section 3.3). Additionally, users that are only
interested in obtaining the feature representations for their custom dataset can use
this component as a standalone module.

47

D3.2 - XR2Learn enablers

As mentioned previously in Section 3.2.1.1, Handcrafted Feature Extraction component
can also be considered part of Enabler 3 in the case where these representations are
preferred to be used for Supervised Training (Enabler 4) skipping SSL. A description of
this component and how to use it can be found in Section 3.2.2.

3.2.3.2. Basic User manual

There are two approaches to run Enabler 3 directly: using a docker image or a local
run.

1. For Docker running
a. Running with CPU

i. docker compose run --rm ssl-features-generation-<modality>

b. Running with GPU
i. ./compose-gpu.sh run --rm ssl-features-generation-<modality> (for

Unix based OS, i.e. MacOS and Linux)
ii. docker compose -f docker-compose.yml -f docker-compose-gpu.yml run

–-rm ssl-features-generation-<modality> (for Windows)
2. For local running:

a. Download the specific component from the Training tools repository (e.g.,
SSL_Features_Extraction/SSL_Features_Extraction_Audio_Modality)

b. Prepare the virtual environment (Create and activate the virtual
environment with venv).
i. python -m venv ./venv
ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt (for running with CPU)
ii. pip install -r requirements-gpu.txt (for running with CUDA)

d. Change the “configuration.json” file according to use-case
e. Run the script

i. python generate_features.py

3.2.4. Enabler 4: Unimodal Emotion Classification Tools

3.2.4.1. Description

Enabler 4 is a tool for fine-tuning Deep Learning Emotion Recognition models through
supervised training with labeled data. This component can receive the emotion
representations generated by Enabler 3 as input. During supervised training of the
emotion classification model, this component can utilize the Encoder, i.e., the pre-
trained model generated by Enabler 2 (Section 3.2.2) with frozen weights or perform
further fine-tuning of the pre-trained model, according to the user’s configuration.
Alternatively, Enabler 4 can also receive pre-processed data (output of the Pre-
processing component, Section 3.2.2) as input and implement the entire pipeline to
train both the encoder and the classification model. This is helpful for users who want
to use Enabler 4 as a standalone tool.

For the supervised training phase, this component employs a linear classification on
top of the encoder or feature representations, in which the user can set
hyperparameters and other options through a configuration file, such as the number
of epochs, batch size, learning rate, and optimizer algorithm.

3.2.4.2. Basic User manual

There are two approaches to run Enabler 4 directly: using a docker image or a local
run.

48

D3.2 - XR2Learn enablers

1. For Docker running
a. Running with CPU

i. docker compose run --rm ed-training-<modality>

b. Running with GPU
i. ./compose-gpu.sh run --rm ed-training-<modality> (for Unix based

OS, i.e. MacOS and Linux)
ii. docker compose -f docker-compose.yml -f docker-compose-gpu.yml run

–-rm ed-training-<modality> (for Windows)
2. For local running:

a. Download the specific component from the Training tools repository (e.g.,
Supervised_Training/Supervised_Audio_Modality)

b. Prepare the virtual environment (Create and activate the virtual
environment with venv).
i. python -m venv ./venv
ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt (for running with CPU)
ii. pip install -r requirements-gpu.txt (for running with CUDA)

d. Change the “configuration.json” file according to use-case
e. Run the script

i. python train.py

3.3. INFERENCE TOOLS

3.3.1. Technical Documentation

3.3.1.1. Description

These tools are designed for the unimodal and multimodal emotion classification and
evaluation in XR2Learn. This set of tools includes Emotion Classification (per modality),
Multimodal Fusion and Evaluation components. Each tool is a modularized component
with an isolated environment and dependencies that can be used separately, in
combination, or as an end-to-end system (together with the Command-Line Interface
– CLI).

Each component is deployed using Docker to ensure easy-to-use components,
reproducible development and deployment environments, and consistent results.

Emotion Classification: a component to recognize emotions. Each modality has a
separated emotion classification component.

Multimodal Fusion: a component to execute a decision-level emotion detection
multimodal fusion, i.e., to compute the combination of emotions from different
modalities.

Evaluation: a component to evaluate a uni/multimodal emotion detection model
according to different evaluation metrics.

Figure 21 below depicts the Inference components' overall architecture and
communication. As can be observed, Inference components utilize outputs produced
by Training components.

49

D3.2 - XR2Learn enablers

- Figure 21. An overview of the Inference domain
architecture with its components connections.

3.3.1.2. Prerequisites

The Inference Tools support the three main Operational Systems (OS): Linux, MacOS,
and Windows.

The two pre-requisites are:

- Docker59 installed
- Python 3.1060 installed

3.3.1.3. Installation

1. Download the latest version of the code at:
a. https://github.com/XR2Learn/Enabler-5-Inference/tags

2. Unzip the file
3. Navigate to the root directory of the downloaded project, and from the root

repository, run the command to build the docker images

a. docker compose build

3.3.1.4. Basic User Manual

The enablers were designed to be used with Enablers-CLI, a command-line interface
that simplifies the use of enablers, so the easiest way to access the enablers’
functionalities is by using Enablers-CLI. Please refer to Section 3.5 for information on
how to use CLI.

59 https://docs.docker.com/engine/install/
60 https://www.python.org/downloads/

https://github.com/XR2Learn/Enabler-5-Inference/tags
https://docs.docker.com/engine/install/
https://www.python.org/downloads/

50

D3.2 - XR2Learn enablers

However, if changing or expanding the enablers’ functionalities is required, it is possible
to access each component using docker commands, as exemplified below. Thus, the
instructions described below are focused on running the enablers for a development
environment.

A “configuration.json” file is required to provide the enablers with the necessary
specifications for running. A default version of “configuration.json” is provided and can
be changed by the user.

Run a docker image:

b. docker compose run --rm <service-name>

Note 1: Service names can be found in the “docker-compose.yml” file in the project’s root
folder. Each modality, i.e., audio, bio-measurements (bm), body movements, are
deployed in separated docker containers and their service name follow the structure:

1. emotion-classification-<modality>
2. fusion-layer
3. ed-evaluation

Note 2: Some additional services can be found in the Inference domain “docker-
compose.yml” file, namely:

- redis
- personalisation-tool
- demo-ui

These services are present in the Inference domain to facilitate development and are
explained in detail in Section 3.4, Personalization Tool.

There is an additional script to run all the docker images from a given modality, which
will use the available ‘configuration.json’ file:

For Unix-based OS, MacOS and Linux

b. ./run_all_dockers.sh

For Windows:

c. ./run_all_dockers.ps1

Additional Useful Commands:

1. Build a specific docker image
a. docker compose build <service-name>

2. Run a specific docker image
a. docker compose run --rm <service-name>

3. Run a specific docker image providing Environment Variables in the format
KEY=VALUE:

a. KEY=VALUE docker compose run --rm <service-name>
4. Run a specific docker image with shell entry point

a. docker compose run --rm <service-name> \bin\bash

51

D3.2 - XR2Learn enablers

All the outputs produced by any component in the Inference domain are saved and can
be accessed in the folder ./outputs.

3.3.1.5. Open-source Code

The Inference tools can be found in the project’s GitHub repository at:

- https://github.com/XR2Learn/Enabler-5-Inference

LICENSE

The Inference tools code is shared under a dual-licensing model. For non-commercial
use, it is released under the MIT61 open-source license. A commercial license is required
for commercial use.

More details on the End User License Agreement (EULA) can be found at:

https://github.com/XR2Learn/Enabler-5-Inference/blob/master/LICENSE

Available versions

- Table 9. Inference tools enablers and components
released versions and date.

Version Release Date

v0.1.0 2023-10-27

v0.1.1 2023-12-06

v0.2.0 2024-01-09

v0.3.0 2024-01-19

v0.3.1 2024-02-15

All the released versions can be accessed at: https://github.com/XR2Learn/Enabler-
5-Inference/tags

Table 9 lists the Inference tools released versions with date. A description of the
main changes in the project’s versions can be found at:
https://github.com/XR2Learn/Enabler-5-Inference/blob/master/CHANGELOG.md

3.3.2. Enabler 5: Multimodal Fusion Tools

3.3.2.1. Description

This enabler combines identified emotions from multiple modalities into a final
predicted emotion. The current version implements a decision-level multimodal fusion
type using a majority voting fusion schema at the class probability level.

This enabler's inputs are the predicted emotions from each modality (as a .csv file with
.npy file paths containing the predicted emotion label array).

For the generated output, Enabler 5 supports two different formats:

61 https://opensource.org/license/mit/

https://github.com/XR2Learn/Enabler-5-Inference
https://github.com/XR2Learn/Enabler-5-Inference/blob/master/LICENSE
https://github.com/XR2Learn/Enabler-5-Inference/tags
https://github.com/XR2Learn/Enabler-5-Inference/tags
https://github.com/XR2Learn/Enabler-5-Inference/blob/master/CHANGELOG.md
https://opensource.org/license/mit/

52

D3.2 - XR2Learn enablers

1. A .csv file with the final fusion predicted emotions that can be found in
/outputs/predictions.csv (currently default behavior)

2. Enabler 5 can also behave as a publisher component, publishing the fusion
predicted emotion according to the Publisher/Subscriber messaging protocol.

To set up the multimodal fusion layer as a publisher, add "publisher: true" under the
key "inference_config". By setting the publisher configuration as true, this component
can communicate with Personalization tool components using a publisher/subscriber
messaging protocol as described in the following section, Personalization Tool.

3.3.2.2. Basic User Manual

There are two approaches to run Enabler 5 directly: using a docker image or a local
run.

1. For Docker running:
a. docker compose run --rm fusion-layer

2. For local running:
a. Download the specific component from the Inference tools repository

(e.g., Multimodal_Fusion/Multimodal_Fusion_Layer)
b. Prepare the virtual environment (Create and activate virtual environment

with venv).
i. python -m venv ./venv
ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt

d. Change the “configuration.json” file according to the desired use-case
3. Run the script

a. python predict.py

3.3.3. Emotion Classification and Model Evaluation

3.3.3.1. Description

The emotion classification component utilizes the fine-tuning model’s weights trained
by the supervised training component (Enabler 4; Section 3.2.4) in the Training domain
to identify the emotion from extracted features. It also can use the pre-trained encoder
generated in the Training domain (Enabler 2; Section 3.2.2) combined with the fine-
tuned model to predict emotions from pre-processed data.

Each modality of this component is deployed separately in different Docker container
images to allow a separate environment for each modality and dependencies, thus
facilitating the implementation and extension of additional modalities.

The Model Evaluation component utilizes the final predictions generated by the
multimodal fusion component, or a given unimodality prediction, to evaluate the
combined pipeline performance according to different evaluation metrics, for instance,
accuracy, recall, precision, and confusion matrix.

3.3.3.2. Basic User Manual

There are two approaches to run an Emotion Classification component directly: using
a docker image or a local run.

1. For Docker running:
a. docker compose run --rm emotion-classification-<modality>

2. For local running:

53

D3.2 - XR2Learn enablers

a. Download the specific component from the Inference tools repository
(e.g., Emotion_Classification/Emotion_Classification_Audio_Modality)

b. Prepare the virtual environment (Create and activate virtual environment
with venv).

i. python -m venv ./venv
ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt

d. Change the “configuration.json” file according to the desired use-case
e. Run the script

i. python predict.py

Similarly to other components, there are two approaches to run the Emotion Detection
Evaluation component directly: using a docker image or a local run.

1. For Docker running:
a. docker compose run --rm ed-evaluation

2. For local running:
a. Download the specific component from the Inference tools repository

(e.g., ED_Evaluation/ED_Evaluation)
b. Prepare the virtual environment (Create and activate virtual environment

with venv).
i. python -m venv ./venv
ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt

d. Change the “configuration.json” file according to the desired use-case
e. Run the script

i. python evaluate.py

3.4. PERSONALIZATION TOOL

3.4.1. Technical Documentation

3.4.1.1. Description

The Personalization Tool utilizes the user’s predicted emotions as the output of the
Training and Inference domain, together with contextual information, e.g., a user and
activity levels, to provide personalized suggestions on the recommended activity level
for the user in educational XR applications.

The Personalization Tool exploits the Publisher/Subscriber messaging protocol
implemented using Redis to provide asynchronous, real-time communication between
the Personalization Tool, Inference domain and an XR educational software
implemented using Unity.

A web-based DemoUI is also provided as a graphic interface for better visualizing the
personalization tool functionality and how it communicates with the other domain’s
components, i.e., multimodal fusion layer and Unity application.

Figure 22 below depicts the Personalization Tool architecture with its different
components and communication with Training and Inference components, represented
by blue (Training) and green (Inference) colors.

54

D3.2 - XR2Learn enablers

- Figure 22. Overview of the Personalization tool’s
architecture with its components communicating
with the Training (blue) and the Inference (green)

components.

3.4.1.2. Prerequisites

Personalization Tool supports the three main Operational Systems (OS): Linux, MacOS,
and Windows.

The two prerequisites are:

1. Docker62 installed
2. Python 3.1063 installed

3.4.1.3. Installation

1. Download the latest version of the code at:
a. https://github.com/XR2Learn/Enabler-6-Personalisation-Tool

2. Unzip the file
3. Navigate to the root directory of the downloaded project, and from the root

repository, run the command to build the docker images
a. docker compose build

For installing locally:

1. Personalization Tool
a. Navigate to the directory Personalisation_Tool
b. Prepare the virtual environment (Create and activate virtual environment

with venv).
i. python -m venv ./venv

ii. source ./venv/bin/activate

62 https://docs.docker.com/engine/install/
63 https://www.python.org/downloads/

https://github.com/XR2Learn/Enabler-6-Personalisation-Tool
https://docs.docker.com/engine/install/
https://www.python.org/downloads/

55

D3.2 - XR2Learn enablers

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt

2. DemoUI
a. Navigate to the directory DemoUI
b. Prepare the virtual environment (Create and activate virtual environment

with venv).
i. python -m venv ./venv

ii. source ./venv/bin/activate

c. Install the requirements within the virtual environment
i. pip install -r requirements.txt

3.4.1.4. Basic User Manual

Personalization Tool can be used as a standalone application or with Enablers-CLI, a
command-line interface to simplify the use of Enablers. The easiest way to access the
Personalization Tool’s functionalities is by using Enablers-CLI. Please refer to Section
3.5 for information on how to use CLI.

However, if changing or expanding the Personalization tool’s functionalities is required,
it is possible to access each component using docker commands, as exemplified below.
Thus, the instructions described below are focused on a development environment.

A “configuration.json” file is required to provide the components with the necessary
specifications for running. A default version of “configuration.json” is provided and can
be changed by the user.

To run all the docker images and access the DemoUI:

1. Run the command:
a. docker compose up -d

2. Go to the URL to access the DemoUI:
a. http://127.0.0.1:8000/

3.4.1.5. Open-source code

Personalization Tool can be found in the project’s GitHub repository at:

- https://github.com/XR2Learn/Enabler-6-Personalisation-Tool

LICENSE

The Personalization tool code is shared under a dual-licensing model. For non-
commercial use, it is released under the MIT64 open-source license. A commercial
license is required for commercial use.

Fine-tuned models created using the RAVDESS dataset are shared under the CC BY-
NC-SA 4.0 license to comply with the RAVDESS license, as the models are derivative
works from this dataset.

More details on the End User License Agreement (EULA) can be found at:

https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/LICENSE

64 https://opensource.org/license/mit/

http://127.0.0.1:8000/
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/LICENSE
https://opensource.org/license/mit/

56

D3.2 - XR2Learn enablers

Available versions

- Table 10. Personalization tool components released
versions and date.

Version Release Date

v0.1.0 2023-10-31

v0.1.1 2023-12-06

v0.2.0 2024-01-19

v0.2.1 2024-02-15

All the released versions can be accessed at: https://github.com/XR2Learn/Enabler-
6-Personalisation-Tool/tags

Table 10 lists the Personalization tool released versions with date. A description of
the main changes in the project’s versions can be found at:
https://github.com/XR2Learn/Enabler-6-Personalisation-
Tool/blob/master/CHANGELOG.md

3.4.2. Enabler 6: Personalization tool

3.4.2.1. Description

This tool is intended to recommend adjusting learning material difficulty based on the
current learning application level, the user's skill level and current emotions. It uses
components from Training Tools and Inference Tools to process the input data, identify
the user’s emotions and calculate the suggested next learning activity level.

As mentioned earlier, this component implements a publisher/subscriber messaging
protocol using Redis. Thus, it subscribes to channels to get information from Inference
components (multimodal fusion layer) and an XR Unity application. While it also
publishes information (the suggested activity level) to a different channel so other
components can access and process this information.

3.4.2.2. Basic User Manual

There are two approaches to run the Personalization tool directly: using docker images
or a local run. Because this component implements a publisher/subscriber using Redis,
it needs to have an instance of Redis service running so the personalization tool can
publish and subscribe to channels (or topics). A simulate_input_output.py script is
provided so a user can visualize (on a shell terminal) the Personalization tool
functionality.

1. For local running
a. Run an instance of Redis:

i. docker compose up redis -d

b. Run the Python script (from inside the virtual environment):
i. python personalisation_tool/suggest_activity_level.py

c. Run (in a different terminal window or tab):
i. python personalisation_tool/simulate_input_output.py

2. For Docker running

https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/tags
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/tags
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/CHANGELOG.md
https://github.com/XR2Learn/Enabler-6-Personalisation-Tool/blob/master/CHANGELOG.md

57

D3.2 - XR2Learn enablers

a. Run the command below (this command will automatically run an
instance of Redis, so personalization tool service can run as well):
i. docker compose run --rm personalisation-tool

b. Run (in a different terminal window or tab):
i. python personalisation_tool/simulate_input_output.py

To stop Redis service:

 docker compose down

3.4.3. Demo UI

3.4.3.1. Description

A web-based application (using Flask65) that uses websockets (socketio) to connect
Javascript with the Flask server. The Flask server runs a background thread that
publishes the websocket events into Redis channels and subscribes to channels as
well, implementing a publisher/subscriber messaging protocol. The Flask server
behaves as an API gateway that translates Redis protocol into websocket protocol. In
simpler terms, DemoUI subscribes to messaging channels (or topics) to display the
communication messages between Enabler 6 (Personalization tool; Section 3.4.2),
Inference tools and XR Unity application, providing a graphic interface for better
visualizing the Personalization Tool functionalities.

Figure 23 below depicts the architecture overview of the communication between the
DemoUI with other components. DemoUI displays messages published by the Enabler
6 - Personalization Tool, Inference tool and the XR Unity application. While also displays
the output of Enabler 6 - Personalization tool processing which will be eventually used
by the XR Unity application.

65 https://flask.palletsprojects.com/en/3.0.x/

https://flask.palletsprojects.com/en/3.0.x/

58

D3.2 - XR2Learn enablers

- Figure 23. Architecture overview of Demo UI
communicating with other components: Enabler 6,

Inference and XR Unity application.

3.4.3.2. Basic User Manual

DemoUI is a Flask web-based application and can be run locally or using a Docker
image.

1. Running with Docker
a. docker compose run --rm demo-ui

b. Go to the URL http://127.0.0.1:8000/ to access the DemoUI
2. Running locally

a. Stat Redis server
i. docker compose up redis -d

b. From inside the virtual environment you prepared in Section 3.4.1.3, run
the command:
i. python web_app.py

When you access the DemoUI, there are two different demos you can use, as shown
by Figure 24 below.

- Figure 24. DemoUI screenshot

1. Personalization Tool v1: DemoUI simulates the input from the Inference (emotion
detection) and the XR Unity app. DemoUI displays the processed output from
Enabler-6.

- Figure 25. DemoUI (version 1) screenshot, with Unity
and Emotion Detection simulation

2. Personalization Tool v2: DemoUI simulates the input from the XR Unity app but
receives the input from the Inference directly. DemoUI displays the processed
output from Enabler-6.

http://127.0.0.1:8000/

59

D3.2 - XR2Learn enablers

- Figure 26. DemoUI (version 2) screenshot, with Unity
simulation

The different versions of DemoUI showcase the Personalization Tool functionalities
regardless of how many components are already deployed and connected with the
whole system, demonstrating the robustness and flexibility of Enablers’ modularized
architecture.

3.5. COMMAND LINE INTERFACE (CLI)

3.5.1. Technical Documentation

3.5.1.1. Description

Enablers-CLI (Command Line Interface) was designed to facilitate the use of XR2Learn
training, inference and personalization tools, i.e., Enablers 2-6 and their components.
To access the Enablers' functionalities through CLI, you need two elements:

1. CLI commands and options
2. A configuration.json file (you can provide a JSON configuration file path as an

option to the CLI command, if you do not provide a JSON configuration file path,
the default file is ./configuration.json).

A default configuration.json file is provided and it can be changed according to the use-
case.

Figure 27 below depicts the Enablers and Enabler-CLI components and their
communication. All components’ outputs can be accessed through CLI at /output
folder.

60

D3.2 - XR2Learn enablers

- Figure 27. Overview of Enabler-CLI’s architecture
serving as a user entrypoint for accessing Training,

Inference, Personalization tools and DemoUI
functionalities.

3.5.1.2. Prerequisites

- Docker66 installed (or Docker-Nvidia67 if GPU use is required)

- Python 3.1068 installed

3.5.1.3. Installation

1. Create virtual environment
a. python -m venv ./venv

b. source ./venv/bin/activate

2. Navigate to the XR2Learn-CLI directory
3. Install XR2Learn-CLI

a. pip install -e . (There is a full stop in the end of the command)

3.5.1.4. Basic User Manual

The general command format to use XR2Learn-CLI is:

python xr2learn_enablers_cli/xr2learn_enablers.py [OPTIONS] [COMMAND]
[OPTIONS]

For help with the options and commands, access a list of arguments and their
description with:

 python xr2learn_enablers_cli/xr2learn_enablers.py --help

Command examples:

1. Training:

66 https://docs.docker.com/engine/install/
67 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
68 https://www.python.org/downloads/

https://docs.docker.com/engine/install/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://www.python.org/downloads/

61

D3.2 - XR2Learn enablers

a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id
model_001 train --dataset ravdess --features_type ssl --ssl_pre_train
encoder_fe --ed_training true

2. Inference (Predict):
a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id

model_001 predict --dataset ravdess

3. Inference (Multimodal Fusion):
a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id

model_001 multimodal --dataset ravdess

4. Inference (Evaluation):
a. python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id

model_001 evaluate --dataset ravdess

5. Start Web-based DemoUI (for personalisation tool user interface):
a. python xr2learn_enablers_cli/xr2learn_enablers.py run_personalisation

Go to the URL http://127.0.0.1:8080 to access the DemoUI

6. Stop Web-based DemoUI (for personalisation tool user interface):
a. python xr2learn_enablers_cli/xr2learn_enablers.py stop-demo-ui

GPU

To use GPU, include an option with value true `--gpu true` before the command.

Example:

python xr2learn_enablers_cli/xr2learn_enablers.py --experiment_id model_001 --gpu true
train --dataset ravdess --features_type ssl --ssl_pre_train encoder_fe --ed_training
true

Benchmarks

XR2Learn-CLI also includes pre-configured benchmarks, which represent use cases on
the enablers functionalities and serve as integration tests for the end-to-end system
formed by CLI and Enablers 2-5.

Some use cases included in the benchmarks are end-to-end systems for the audio
modality using different representations of speech, for example spectrals,
paralinguistic and transformer-based features.

1. Run benchmarks on Unix based OS:

 `./run_benchmarks.sh`

2. Run benchmarks using GPU:

 `GPU=true ./run_benchmarks.sh`

3.5.1.5. Open-source Code

The Training tool can be found in the project’s GitHub repository at
https://github.com/XR2Learn/Enablers-CLI

http://127.0.0.1:8080/
https://github.com/XR2Learn/Enablers-CLI

62

D3.2 - XR2Learn enablers

LICENSE

The XR2Learn-CLI code is shared under a dual-licensing model. For non-commercial
use, it is released under the MIT69 open-source license. A commercial license is
required for commercial use.

More details on the End User License Agreement (EULA) can be found at:

 https://github.com/XR2Learn/Enablers-CLI/blob/master/LICENSE

Available versions

- Table 11. Command line interface (CLI) released
versions and date.

Version Released Date

v0.1.0 2023-11-14

v0.1.1 2023-11-28

v0.1.2 2023-12-07

v0.2.0 2024-01-09

v0.3.0 2024-01-11

v0.4.0 2024-01-19

v0.4.1 2024-02-15

Compatibility

CLI v0.1.x is compatible with:

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0
● XR2Learn Inference v.0.1.X

CLI v0.2.0 is compatible with:

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0
● XR2Learn Inference v.0.2.X

CLI v0.3.0 is compatible with:

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0
● XR2Learn Inference v.0.2.X
● XR2Learn Personalisation v.0.1.X

CLI v0.4.X is compatible with:

● XR2Learn Training v.0.1.0, v0.2.0, v0.3.0
● XR2Learn Inference v.0.2.X, v.0.3.0

69 https://opensource.org/license/mit/

https://github.com/XR2Learn/Enablers-CLI/blob/master/LICENSE
https://opensource.org/license/mit/

63

D3.2 - XR2Learn enablers

● XR2Learn Personalisation v.0.1.X, v.0.2.0

All the released versions can be accessed at: https://github.com/XR2Learn/Enablers-
CLI/tags

Table 11 lists the Command line interface (CLI) released versions and date. A
description of the main changes in the project’s versions can be found at:
https://github.com/XR2Learn/Enablers-CLI/blob/master/CHANGELOG.md

https://github.com/XR2Learn/Enablers-CLI/tags
https://github.com/XR2Learn/Enablers-CLI/tags
https://github.com/XR2Learn/Enablers-CLI/blob/master/CHANGELOG.md

64

D3.2 - XR2Learn enablers

4. DATA ACQUISITION

The performance of Machine and Deep Learning models heavily depend on the quality
of data used for training and evaluation. Furthermore, whereas Self-Supervised
Learning can be effectively used to learn latent representations of different types of
data, annotations are crucial for supervised learning and/or fine-tuning these
representations and mapping them to outputs the models are intended to recognize.

In Section 3.1, we presented the preliminary research on emotion recognition
conducted with open-source data containing speech, bio-measurements and body
tracking. According to the analysis conducted, we identified a set of modality-specific
and common challenges and limitations arising when developing emotion recognition
models. In particular, the issues related to the open available datasets can be briefly
summarized as follows:

● Emotion elicitation and data annotation are challenging aspects requiring
personalized approaches based on the use case. First of all, there is a lack of
available data that have been collected in educational settings. Furthermore,
the existing datasets do not utilize emotional models related to education, such
as the theory of flow, for annotations. Nevertheless, our enablers require
annotated data for training classifiers using engagement-related metrics in order
to allow personalization in educational settings. Besides, the experiments on
open-source datasets have shown that not all emotion elicitation and
annotation strategies are effective enough to provide accurately labeled data.

● As a result of the wide range of sensors and devices that can be used to record
bio-measurements and the different methods of recording them, there is no
standard format for storing bio-measurements. Therefore, creating a single data
processing system that can handle data from multiple sources is challenging.

● Datasets based on body tracking data contain rich information regarding
multiple key points in human bodies. Nevertheless, commercial VR equipment
allows tracking fewer bodily cues, namely controllers and headset positions.

The identified problems make it feasible to only rely partially on open datasets for
building models within Enablers 2-6. Thus, a dedicated data collection tool is needed
to overcome these limitations and collect data suitable for training and utilizing models
in the implemented enablers.

4.1. MAGIC XROOM: DATA COLLECTION TOOL

4.1.1. Technical Documentation

4.1.1.1. Description

The Magic XRoom is a Virtual Reality (VR) application developed in the framework of
Task 3.2 to elicit specific emotions and gather data from external sensors through a
set of scenarios. The application allows the user to experience four different scenarios
composed of increasingly difficult tasks that require various skills to complete within
a time limit.

65

D3.2 - XR2Learn enablers

The data collected with the Magic XRoom is organized, annotated and written to CSV
files to facilitate its analysis. The sensors compatible with the Magic XRoom are the
following:

● Virtual Reality headset and controllers (mandatory)

○ Collect position and rotation.

● Shimmer 3 GSR+ device (optional)

○ Collect position, rotation, acceleration, galvanic skin response (GSR, EDA),
photoplethysmography (PPG, BVP), and heart rate (generated from the
PPG data).

● Lip and Eye tracking devices (optional)

○ Collect eyes and lip features.

4.1.1.2. Prerequisites

The Magic XRoom is compatible only with Microsoft Windows 10 (or higher) x64
systems.

The minimum requirements in terms of hardware sensors are a Virtual Reality headset
and Virtual Reality controllers. For this the software required is:

● SteamVR (downloaded with Steam)

● VR headset linking/streaming software, i.e.

○ VIVE Focus 3 requires VIVE Business Streaming;

○ Oculus Quest requires the Oculus Desktop App.

4.1.1.3. Installation

Depending on which external sensors will be used during the data collection, additional
software must be installed and configured prior to launching the Magic XRoom
application.

To use a Shimmer 3 GSR+ device:

● No additional software is required, but the sensor must be configured with the
LogAndStream firmware;

● Bluetooth 5.1+ availability required;

● The Shimmer sensor must be paired with the computer before starting the
application.

Please refer to the official documentation70 for a detailed explanation of successfully
setting up and pairing a Shimmer GSR+ device.

To use face/eye tracking:

70 https://shimmersensing.com/wp-
content/docs/support/documentation/GSR_User_Guide_rev1.13.pdf

https://shimmersensing.com/wp-content/docs/support/documentation/GSR_User_Guide_rev1.13.pdf
https://shimmersensing.com/wp-content/docs/support/documentation/GSR_User_Guide_rev1.13.pdf

66

D3.2 - XR2Learn enablers

● SRanipal runtime (included in VIVE Console for SteamVR on Steam);

● The computer and the VR hardware must be connected to the same 5GHz WiFi
network. The Windows mobile hotspot has shown promising results during
testing when a WiFi network is unavailable or restricted.

4.1.1.4. Basic User Manual

The actions mapped to the VIVE Focus 3 controllers are the following (mirrored on the
left controller):

- Figure 28. Magic Xroom handheld controllers actions
and buttons.

The following are the recommended steps to successfully launch and use the Magic
XRoom with a VIVE Focus 3. Due to the nature of VR hardware/software and their
environments, alternative methods might work but it is up to the user to choose
which to follow and ensure the software works as intended.

Note: software versions shown in images might differ

1. Download the required software and setup the hardware

a. Link the VR headset and controllers, pair the Shimmer sensor, connect
to a strong WiFi if eye/face tracking is enabled

2. Launch VIVE Streaming Business

67

D3.2 - XR2Learn enablers

- Figure 29. VIVE Business Streaming starting screen.
3. Launch VIVE SRanipal (Steam version) if eye/face tracking is enabled (it

launches automatically at point 5. but this step ensures the correct version is
used in case multiple versions are installed on the computer)

a. Default install directory is
<steam install directory>\steamapps\common\VIVEDriver\App\SRanipal

b. When successfully connected with the eye tracking accessory the tray
icon should change color (same for mouth tracking).

- Figure 30. Representation of icon colors change indicating the use
of eye tracking accessory.

Note: In the new versions of the software, the icon turns blue when connected, instead
of green.

4. Configure the user settings if necessary (explained further down in this
chapter)

5. Launch the Magic XRoom executable (SteamVR starts automatically)

At this point the user should be within the virtual world of the Magic XRoom.

In order to start the data collection one last step is required:

- Figure 31. Magic Xroom sensors panel and data
collection start button

The red button shown in the above picture is used to start/stop the data collection.
The panel above it shows the current state of the data collection [Stopped / Running
] and the current state of the Shimmer device [Disconnected / Connecting /
Connected / Streaming / Inactive]. If the Shimmer sensor is used, it’s important to
wait until it shows a Connected state while it’s connecting to the PC before starting
the data collection and wait for it to turn into the Streaming state, otherwise no data
will be collected for this sensor.

68

D3.2 - XR2Learn enablers

It is possible to work on multiple sessions without restarting the application by
starting/stopping the data collection. Each time a new data collection is started a
unique set of files is generated.

The Magic XRoom application can be configured with an external file to
enable/disable some features or to tweak parameters related to the data collection.

The configuration file can be found in a subfolder of the directory of the executable:
<Magic Xroom directory>\xr2learn-magicxroom_Data\StreamingAssets\UserSettings.xml

For all sensors that require samplingRate or samplingBufferSize, to calculate the
delay ∆t in [s] between each write operation for a specific sensor use the following
formula:

𝛥𝑡 =
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒

Higher values will impact less on performance but will result in more data being lost
in case of abrupt interrupts in the data collection.

Example: with a samplingBufferSize of 50 and a samplingRate of 10Hz the resulting
delay will be 5s, meaning that at most 5s of data might be lost in case of unexpected
errors or problems with the application/hardware/connection.

The UserSettings.xml file contents are the following:

● keyboard
○ enableShortcuts [true/false] => enables/disables the following keyboard

shortcuts (the application window must be focused to receive keyboard
inputs):

■ F => manually shows the Feedback Board
■ D => toggles (start/stop) the data collection

● dataCollection
○ autoStart [true/false] => enables/disables the automatic start of the

data collection when the application starts.
○ outputPath [Windows compatible directory] => specifies the location

where the data collection files will be generated. If left empty the
default location is the same as the executable file. Ensure read/write
operations are allowed for the current user

● vr
○ config
○ samplingRate [integer] => the frequency in [Hz] at which the application

will sample data from the VR headset and controllers
○ samplingBufferSize [integer] => the number of samples buffered before

writing to file
● shimmer

○ enabled [true/false] => enable/disable the Shimmer sensor data
collection

○ deviceName [any] => the Shimmer device internal name
○ config

■ heartbeatsToAverage [integer] => the number of heartbeat inputs
used to calculate an average. Higher values tend to generate
better results but sometimes break due to the volatility of the
Bluetooth communication, i.e. if the value is set to 10 and one of
the 10 inputs is corrupted or invalid, the overall average will be
invalid for the next 10 calculations.

69

D3.2 - XR2Learn enablers

■ trainingPeriodPPG [integer] => the delay in [s] before the PPG
signal is able to calculate a heartbeat

■ samplingRate [integer] => the frequency in [Hz] at which the
application will sample data from the Shimmer sensor

■ samplingBufferSize3 [integer] => the number of samples buffered
before writing to file.

○ sensors
■ enableAccelerator [true/false] => enables/disables the Shimmer

internal accelerator sensor
■ enableGSR [true/false] => enables/disables the Shimmer internal

GSR sensor
■ enablePPG [true/false] => enables/disables the Shimmer internal

PPG sensor
● eyeTracking

○ enabled [true/false] => enables disables eye tracking
○ config

■ samplingRate [integer] => the frequency in [Hz] at which the
application will sample data from the eye tracking sensor

■ samplingBufferSize [integer] => the number of samples buffered
before writing to file.

● faceTracking
○ enabled [true/false] => enables disables face tracking
○ config

■ samplingRate [integer] => the frequency in [Hz] at which the
application will sample data from the face tracking sensor

■ samplingBufferSize [integer] => the number of samples buffered
before writing to file.

● feedback
○ enabled [true/false] => enables disables the feedback feature
○ afterScenario [true/false] => show the feedback panel at the end of a

scenario
○ afterLevel [true/false] => show the feedback panel at the end of each

level

Note that in case the UserSettings.xml file is not found in the specified directory
or in case of any erroneous or missing data, the application will use any or all the
default values shown in the below image and in the original file provided with the
executable.

It is advised to modify the UserSettings.xml file and disable any sensors not in use
to avoid unnecessary burden on the application.

70

D3.2 - XR2Learn enablers

- Figure 32. UserSettings.xml file with the supported
values.

The output of the Magic XRoom is a set of files containing the data collected by the
sensors enabled prior to launching the application.

Each of the enabled sensors will generate a comma-separated values (CSV) file
sharing a unique identifier for the session, using the following naming convention:

data_collection_<session ID>_<sensor type>.csv

The session ID is generated as a number referring to the number of ticks since
midnight 01.01.0001. Each tick represents 100 nanoseconds and to retrieve the
corresponding date, input the number in an epoch converter (compatible with C#
DateTime).

VR

data_collection_<session ID>_VR.csv

Contains the data collected from the Virtual Reality Headset and Controllers.
The columns represent the position and rotation of the headset and controllers:

● timestamp => application timestamp
● head_pos_x => headset absolute position x axis
● head_pos_y => headset absolute position y axis
● head_pos_z => headset absolute position z axis
● head_rot_x => headset absolute rotation x (quaternion)
● head_rot_y => headset absolute rotation y (quaternion)
● head_rot_z => headset absolute rotation z (quaternion)
● head_rot_w => headset absolute rotation w (quaternion)
● lcontroller_pos_x => left controller absolute position x axis
● lcontroller_pos_y => left controller absolute position y axis
● lcontroller_pos_z => left controller absolute position z axis
● lcontroller_rot_x => left controller absolute rotation x (quaternion)
● lcontroller_rot_y => left controller absolute rotation y (quaternion)
● lcontroller_rot_z => left controller absolute rotation z (quaternion)
● lcontroller_rot_w => left controller absolute rotation w (quaternion)
● rcontroller_pos_x => right controller absolute position x axis
● rcontroller_pos_y => right controller absolute position y axis
● rcontroller_pos_z => right controller absolute position z axis
● rcontroller_rot_x => right controller absolute rotation x (quaternion)
● rcontroller_rot_y => right controller absolute rotation y (quaternion)
● rcontroller_rot_z => right controller absolute rotation z (quaternion)
● rcontroller_rot_w => right controller absolute rotation w (quaternion)

Shimmer

data_collection_<session ID>_SHIMMER.csv

Contains the data collected from the Shimmer device.
The columns represent the values captured by the Shimmer sensors

● timestamp => application timestamp
● int_timestamp => Shimmer internal timestamp
● accel_x => Shimmer accelerator x axis
● accel_y => Shimmer accelerator y axis

71

D3.2 - XR2Learn enablers

● accel_z => Shimmer accelerator z axis
● gsr => Shimmer Galvanic Skin Response (GSR) sensor
● ppg => Photoplethysmograph (PPG) sensor
● hr => heart rate computed from the PPG data

Eye Tracking

data_collection_<session ID>_EYE.csv

Contains the data collected from the Eye Tracking device (vectors are right-handed).
The columns represent the gaze, pupil and position of each eye

● timestamp => application timestamp
● int_timestamp => Eye Tracking device internal timestamp
● left_gaze_origin_x => left eye x cornea center relative to each lens center

[mm]
● left_gaze_origin_y => left eye y cornea center relative to each lens center

[mm]
● left_gaze_origin_z => left eye z cornea center relative to each lens center

[mm]
● left_gaze_dir_norm_x => left eye gaze x direction normalized [0,1]
● left_gaze_dir_norm_y => left eye gaze y direction normalized [0,1]
● left_gaze_dir_norm_z => left eye gaze z direction normalized [0,1]
● left_pupil_diameter => left eye pupil diameter in [mm]
● left_eye_openness => left eye openness (0 closed, 1 open)
● left_pos_norm_x => normalized left eye pupil x pos relative to lenses (0.5,0.5

is center)
● left_pos_norm_y => normalized left eye pupil y pos relative to lenses (0.5,0.5

is center)
● right_gaze_origin_x => right eye x cornea center relative to each lens center

[mm]
● right_gaze_origin_y => right eye y cornea center relative to each lens center

[mm]
● right_gaze_origin_z => right eye z cornea center relative to each lens center

[mm]
● right_gaze_dir_norm_x => right eye gaze x direction normalized [0,1]
● right_gaze_dir_norm_y => right eye gaze y direction normalized [0,1]
● right_gaze_dir_norm_z => right eye gaze z direction normalized [0,1]
● right_pupil_diameter => right eye pupil diameter in [mm]
● right_eye_openness => right openness (0 closed, 1 open)
● right_pos_norm_x => normalized right eye pupil x pos relative to lenses (0.5,0.5

is center)
● right_pos_norm_y => normalized right eye pupil y pos relative to lenses (0.5,0.5

is center)

72

D3.2 - XR2Learn enablers

- Figure 33. Representation of normalized gaze
direction vectors.

Face Tracking

data_collection_<session ID>_FACE.csv

Contains the data collected from the Face Tracking device (vectors are right-handed).
The columns represent 27 facial points/features and how much these points are
influencing the resulting facial expression (some are self-explanatory)

● timestamp => application timestamp
● int_timestamp => Face Tracking device internal timestamp
● none => no difference compared to the default shape
● jaw_forward => jaw position on the forward axis
● jaw_right => jaw position on the right side of the horizontal axis
● jaw_left => jaw position on the left side of the horizontal axis
● jaw_open => jaw openness
● mouth_ape_shape => mouth aperture shape
● mouth_o_shape => mouth O shape (i.e. while making an “O” sound)
● mouth_pout => mouth pouting shape
● mouth_lower_right => mouth lower right shift
● mouth_lower_left => mouth lower left shift
● mouth_smile_right => mouth smile shape right side
● mouth_smile_left => mouth smile shape left side
● mouth_sad_right => mouth sad shape right side
● mouth_sad_left => mouth sad shape left side
● cheek_puff_right => cheek puff shape right side
● cheek_puff_left => cheek puff shape left side
● mouth_lower_inside => mouth inside lower shape

73

D3.2 - XR2Learn enablers

● mouth_upper_inside => mouth inside upper shape
● mouth_lower_overlay => mouth inside lower overlay
● mouth_upper_overlay => mouth inside upper overlay
● check_suck => cheek “suck” expression
● mouth_lower_right_down => mouth lower right down shift
● mouth_lower_left_down => mouth lower left down shift
● mouth_upper_right_up => mouth upper right up shift
● mouth_upper_left_up => mouth upper left up shift
● mouth_philtrum_right => mouth philtrum right shape
● mouth_philtrum_left => mouth philtrum left shape

Progression Events

data_collection_<session ID>_PROGRESS_EVENT.csv

Contains the events representing the user interaction with the environment and the
scenarios. The columns represent the event type and the information relative to that
event

● timestamp => application timestamp
● event_type => event type
● info => information relative to the event

The events generated fall in the following categories:

● Scenario => a scenario can either be started manually by the user, or is ended
by completing all the levels or teleporting outside the scenario area. The info
column represents the name of the scenario.

○ SCENARIO_STARTED => a scenario is manually started
○ SCENARIO_ENDED => a scenario is ended, either by competition or by

leaving the scenario area
● Level => a scenario is composed of one or more levels. A level can be started,

completed or failed. The info column represents the level difficulty as a number
depending on the specific scenario.

○ LEVEL_STARTED => a level is started
○ LEVEL_FAILED => a level is failed
○ LEVEL_COMPLETED => a level is completed successfully

● Teleport => the user uses a teleport feature to enter or exit a scenario area. The
info column represents the name of the scenario.

○ TELEPORT_IN => the user was outside a scenario area and has teleported
inside a scenario area

○ TELEPORT_OUT => the user was inside a scenario area and has teleported
outside a scenario area

● Feedback => the user can provide feedback on his/her emotional state in the
latest scenario or level. The info column represents the time in [ms] that the
user waited before making a decision. The SKIP option is used for exceptional
situations, i.e. the user entered a scenario area by mistake and exited it right
away without starting a level.

○ BORED => the user was bored
○ ENGAGED => the user was engaged
○ FRUSTRATED => the user was frustrated
○ SKIP => the user skipped the selection

● Shimmer => in order to facilitate the synchronization between the Shimmer
device and the other sensors, the Shimmer internal timestamp is added when a
scenario is started/stopped

74

D3.2 - XR2Learn enablers

Note that the value of timestamp written in each of the files just mentioned is
synchronized and taken from the same context. Although the application itself runs
mainly on one thread, some of the sensors might have a delay in reading or providing
data. When available, refer to both the timestamp and int_timestamp values to
understand if the delay between the polling of data from a sensor and the writing to
file operation should be taken into consideration or if it’s negligible.

The Magic XRoom provides a system to request the user for their emotional state (self-
annotations) at specific moments throughout the experience.

- Figure 34. User feedback screen in the Magic XRoom,
including the three emotions according to the

Theory of Flow
The Feedback Panel contains four interactable buttons with the following results:

● Bored: the experience is not providing engagement comparable to the user skill
level

● Engaged: the experience is engaging for the user, the difficulty is correctly
balanced for the user skill level

● Frustrated: the user is experiencing a frustration or anxiety because of a gap
between their skill level and the experience difficulty

● Skip: the user has the option to not answer

The panel is shown after each level/scenario depending on the User Settings, but can
also be toggled manually by pressing the F key on the keyboard.

As mentioned before, the Magic XRoom contains four scenarios meant to elicit specific
emotions and gather data from external sensors. Each experience is composed of
increasingly difficult tasks that require various skill levels to complete before a given
time limit.

Some of the experiences are positioned on desks that can be adjusted in height with
a handle.

75

D3.2 - XR2Learn enablers

- Figure 35. Desk handle for level adjustment
Stacking Cubes

Stacking Cubes is an experience in which the user is tasked with positioning 4 cubes
on top of each other within a time limit. The cubes properties vary between levels:

1. The cubes have no particular property and are the same size
2. The cubes are slippery
3. The cubes are bouncy
4. The cubes are of different size and must be stacked from small to big
5. The cubes are the same size but an external force (wind) is making it difficult

to stack them straight

Failed levels must be repeated until successfully completed.

- Figure 36. Initial screen of stacking game scenario
Color Words

Color Words is a fast-paced experience in which the user is tasked to select (touch)
one of the cubes on the desk depending on its color. The correct color is shown on the
screen as a word describing the color but coloured with a different one. For example,

76

D3.2 - XR2Learn enablers

if the word yellow appears in red color, the user must select a yellow cube, not a red
one. Multiple cubes of the same color might appear.

As the game progresses the number of cubes available increases and the time available
to make a decision decreases, until the user chooses the wrong color or there is not
enough time to select a cube and the experience ends.

- Figure 37. Color words scenario screen when the
time is out

Canvas Painting

Canvas Painting is a painting minigame where the user is tasked with drawing a specific
shape without exiting a given area. A limited number of mistakes are allowed.

- Figure 38. Canvas painting scenario instructions
screen

77

D3.2 - XR2Learn enablers

Tower of Hanoi

Tower of Hanoi is a relatively famous game. The version used in the Magic XRoom is
composed of 3 rods and 3 discs. The rods are of different sizes: the left-most can hold
3 disks at the same time, the middle one 2, and the right-most only 1.

The user is presented with two sets of rods and disks. The set closer to the user is the
interactive one (interaction set), while the other one represents the target configuration
(configuration set). At the beginning of each level the configuration set shows the target
configuration and the user must try and match it with the disks in the interaction set.
The moves available are limited (depending on the level and difficulty) and a time limit
is displayed on the screen.

- Figure 39. Tower of Hanoi scenario instructions
screen

4.1.1.5. Open-source Code

The latest version of the Magic Xroom and its source code can be found at:

https://github.com/XR2Learn/magic-xroom

-

-

-

- Table 12. Magic XRoom versions and their release
dates.

Version Release date

https://github.com/XR2Learn/magic-xroom

78

D3.2 - XR2Learn enablers

v0.1.0 2023-11-07

v0.2.0 2023-11-13

v0.2.1 2023-11-16

v0.2.2 2023-11-20

v0.3.0 2023-11-30

v0.4.0 2024-01-18

v1.0.0 2024-02-12

v1.1.0 Planned for 2024-02-29

v1.0.0 is the result of continuous improvements and feedback from the January pilot.
v1.1.0 is planned for the submission of this document as a public release. The project
contents will be cleaned and formatted following sector standards in order to facilitate
its use and understanding.

4.1.1.6. Known Issues

The following is a comprehensive list of known issues and potential bugs related to
the Magic Xroom as of the publication of this document.

SRanipal

SRanipal serves as the runtime environment, enabling interaction with the Vive Facial
Tracker and related Vive eye/face tracking hardware on Windows PCs. It is currently
the only option for the Vive Focus face and eye accessories. A review of the existing
online resources, including documentation, support, and code, indicates that SRanipal
is not yet in a finalized release state.

To provide a better understanding of the current state of the SRanipal framework, the
following are a few examples of the many issues found during development which one
would usually not expect from this type of software:

● Several recent versions were tested, and they presented unnecessarily use and
allocation of huge portions of the computer resources;

● In the latest versions, if left unchecked, the framework quickly generates
gigabytes of data in log files. This feature cannot be turned off;

● Launching the SRanipal runtime triggers the launch of additional processes
which seem unnecessary and use a significant amount of system resources;

● If the installation process fails, which has been shown to occur frequently, the
uninstaller fails to entirely cleanse the system, leaving it in an intermediate
state. Attempting to reinstall the software consequently triggers a well-known
error, requiring manually deleting specific system registry keys with
administrative privileges to fix the issue.

The Magic Xroom is significantly dependent on the data generated by this framework,
which frequently appears inconsistent or missing. Throughout the initial data collection
trial, several specific behaviors were noted, leading to the compilation of a list of
guidelines aimed at preventing or reducing issues associated with data obtained
through this framework:

● Before initiating a data collection session, verify the functionality of all sensors
through a preliminary simulation.

79

D3.2 - XR2Learn enablers

● Adjust the headset to fit the user's facial structure accurately:
○ Calibration of the eye tracker should start only after the headset has

been correctly positioned;
○ It is essential to position the headset in a manner that does not

obstruct any portion of the mouth area, as visibility of this region is
crucial for the face tracker's effectiveness.

It is important to note that the version of SRanipal installed on the computer can have
a significant impact on the outputs of Magic Xroom. Currently, Magic Xroom only
supports the Steam SRanipal version, which should be the only version installed on
the machine. Using multiple SRanipal versions on a single computer can cause
interference issues between them and affect the functionality of Magic Xroom.

We will closely monitor future releases of this framework and evaluate potential
upgrades of the version used for the Magic Xroom.

VR tracking area

For consistent performance with the Vive Focus headset, the user must stay within
the predefined tracking zone. Should the controllers or headset move beyond the
boundaries of this area, updates to their positional and rotational data might cease,
and this interruption will persist even upon re-entering the designated tracking zone.

The best solution currently is to monitor the user's movements during data collection
strictly.

Unity physics engine

During the operation of the Magic Xroom application, it has been documented that
removing the headset activates a 'low performance' mode, resulting in a reduced
application refresh rate. This adjustment adversely impacts the Unity physics engine,
as it may cause frames to be skipped or not processed within the anticipated
timeframe. Consequently, objects within the virtual reality environment can
unexpectedly accelerate to excessive velocities, potentially colliding with other objects
and disrupting specific scenarios.

The recommended corrective action, in situations where the physics within the virtual
environment break, is to restart the application and resume from the point before the
disruption.

Further testing of the Unity layers and colliders systems is necessary to understand
what triggers these situations and to develop ways to prevent them.

Vive Focus eye tracker

The Vive Focus eye tracker (Figure 40) is positioned between the headset lenses and
the padding. Despite its slim profile, it introduces a gap that causes visual blurriness.
Adjustments to the headset position or interpupillary distance offer minimal
improvement. This issue has been widely reported by users as the cause of diminished
virtual reality immersion, complicated text readability, and impaired depth perception.
Furthermore, the accuracy of data collected from users who wear thick prescription
glasses or glasses with wide frames is notably compromised, leading to data loss or
inconsistent outcomes from the eye tracker.

80

D3.2 - XR2Learn enablers

- Figure 40. Vive Focus eye tracker.

4.2. DATA COLLECTION

4.2.1. Data Collection Protocol for Magic XRoom

The main objective of creating a data collection protocol71 72 is to have a unified
approach that can be exploited by a party that collects data using Magic Xroom. This
would ensure homogeneity across participants, make data processing and analysis
more convenient, improve data readability, and reduce possible outliers. The proposed
data collection protocol uses the power of Virtual Reality (VR) technology to create a
framework for studying human emotions. By combining a VR headset with hand-held
controllers, participants are immersed in a stimulating Magic XRoom environment
where their emotional responses to puzzle-solving tasks are precisely recorded.
Incorporating the Shimmer sensor to capture Galvanic Skin Response (GSR) and
PhotoPlethysmoGram (PPG) data is very valuable, as it directly measures physiological
changes associated with emotional states. Moreover, adding eye and face tracking
sensors mounted on the VR headset enriches the data by capturing subtle eye and
facial movements of various emotions. For the technical documentation concerning
Magic XRoom, please refer to Section 4.1.1.

71 Costa, Jean, et al. "Boostmeup: Improving cognitive performance in the moment by
unobtrusively regulating emotions with a smartwatch." Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 3.2 (2019): 1-23.

72 Gasparini, Francesca, et al. "Personalized PPG Normalization Based on Subject Heartbeat in
Resting State Condition." Signals 3.2 (2022): 249-265.

81

D3.2 - XR2Learn enablers

- Figure 41. Data collection protocol diagram.

We illustrate the suggested data collection protocol as a diagram in Figure 41.
Furthermore, the step-by-step protocol for a data collection session can be
summarized as follows:

1. Ensure that the VR headset and both hand controllers are charged, running, and
connected to the system. Additionally, all required softwares must be run before
starting the Magic XRoom. All these steps help avoiding data loss.

2. Invite the participant to the data collection space.

3. Provide participants with the informed consent agreement form and require
them to read it carefully. This form is expected to be filled online and on paper
for archiving purposes.

a. This form explains the purpose of this research study, study procedures,
time required for the whole experiment, risks and benefits, data
confidentiality, data usage, possibility of data withdrawal by the
participant, and participants' contact information. More specifically, The
informed consent document explains data modalities that will be
collected during sessions which shortly are physiological (GSR, PPG), VR,
eye tracking, and face tracking emotional data via wearable sensors
during a VR puzzle-solving task. The session lasts about 30 minutes with
minimal associated risks. The document emphasizes the confidentiality
of the data collected and the anonymity of participants. It also highlights
compliance with data protection laws (GDPR). Participation is voluntary,
and participants can withdraw at any time without consequences,
including the option to have their data removed. The document also
provides contact information for the study organizers and includes a
section for participants to acknowledge their consent.

b. The consent forms can be created and hosted online using dedicated
platforms compliant with GDPR and offering secure data storage and

82

D3.2 - XR2Learn enablers

encryption of data. The examples of such platforms are “jotform”73 and
“Qualtrics”74.

4. Ask participants to fill the second form, namely the pre-study questionnaire,
that collects demographic information and metadata. Specifically, it collects
basic demographic information such as age, gender, education, occupation,
and/or ethnicity. Participants are also asked about their proficiency with
computers and electronic devices, previous experience with VR, and familiarity
with VR technology. The form inquires about the last time they experienced VR
and if they have any conditions like motion sickness or anxiety that might affect
their VR experience. Additionally, participants are asked about any recent
medications and their main motivation for participating in the study. Finally,
there's a section for participants to confirm their understanding and agreement
to proceed with the VR experiment. This form can also be hosted online.

5. The participant is demonstrated how handheld controllers and VR headset work
in the Magic XRoom. This step is done by the person responsible for collecting
the data.

a. A tutorial is conducted by the dataset collector to avoid confusion during
the execution of the experiments. The tutorial includes a brief description
of the devices functionality, the navigation in the VR environment and the
functioning of the puzzles.

b. The dataset collector wears all VR equipment and explains each and every
part of the virtual environment including puzzles (one by one), how to
teleport in the virtual environment, feedback system, and interaction
buttons on the handheld controllers. This process continues until the
dataset collector is sure that the participant is aware of the expected
previous knowledge from the participant. However, during the
experiment, participants will be guided by the dataset collector during
the whole process if needed.

6. Adjust the VR headset (including face and eye tracker) on the participant’s head
and give them handheld controllers, in which they enter the Magic XRoom.
Before starting the data collection, the user can take some time to familiarize
them with the system.

7. The next step is to attach the Shimmer sensor to the subject's wrist of the non-
dominant hand in which GSR (recording EDA) sensors will be attached to the
index finger and the finger next to it. Also, the PPG sensor (recording BVP) will
be attached to the ring finger. The sensor must be tightened on the fingers and
wrist in order to collect more accurate data. The participant could continue
familiarizing with the system if needed.

8. Participants start data collection. Magic XRoom offers 4 interactive games, also
referred to as scenarios, that should be completed in the order specified in the
next step. Before/after each scenario, a participant should press a red button
next to the “Tower of Hanoi” scenario to start/finish data collection. Detailed
instructions:

● Participants can teleport to the experiments/scenarios and start
interacting with them.

73 https://eu.jotform.com/
74 https://www.qualtrics.com/

https://eu.jotform.com/
https://www.qualtrics.com/

83

D3.2 - XR2Learn enablers

● Each experiment has a table (except the “Canvas Painter”) which has a
blue button in its left corner. By pushing the blue button, the experiment
starts.

● Each scenario is suggested to be completed in two stages:

a. Warming up: makes participants familiar with the scenario.

b. Main trial: collect data when the participant is familiar with the
experiment environment.

9. The suggested order of the games/scenarios is presented below. Overall, 4
(without warming up) or 8 (with warming up) recordings are collected within a
single session with one participant.

a. Canvas Painter

b. Tower of Hanoi

c. Color Words

d. Cube Stacking

10. After finishing each level in each scenario, the participant will be asked to
provide self-annotation on the emotion experienced. As previously mentioned,
the options that can be selected are “Bored”, “Engaged” and, “Frustrated” (based
on flow theory) and “Skip”.

4.2.2. Data Collection Pilots

In January 2024, the first data collection pilots using Magic XRoom were conducted at
SUPSI and UM premises. These pilots involved 31 subjects and were conducted after
the consent forms and questionnaires were approved by SUPSI's and UM's ethics
committees. The main objective of these pilots was to test Magic XRoom's performance
with users and identify any issues with the tool, which has been used to improve Magic
XRoom functionalities and performance. The data collected during the pilots has been
used to establish the format of bio-measurement data and develop pre-processing
pipelines within the emotion recognition enablers. The brief statistics of these pilots
are summarized in Table 13.

84

D3.2 - XR2Learn enablers

- Table 13. Data collection pilots statistics.

Dates Location Number of
participants

Purpose

January-February
2024

SUPSI 20 Testing Magic XRoom

January 2024 UM 13 Testing Magic XRoom, obtain data
input format to implement
enabler components for bio-
measurement modality

85

D3.2 - XR2Learn enablers

5. CONCLUSION

This document describes the progress achieved in Task 3.2, "XR2Learn Enablers", during
the first 14 months of the XR2Learn project, which is part of XR2Learn Phase B, as
described in Section 1.2.2 of the proposal document. Task 3.2 is focused on designing,
implementing, and delivering novel enablers for XR applications, and during the first
sub-phase, the enablers' specification and development have been carried out. The
report also contains information on the additional components and functionalities that
were developed beyond the project proposal enablers. These include Magic XRoom, a
data collection tool, a command line interface to make the enablers more user-friendly,
and a graphical user interface demo to demonstrate the communication between
Personalization tools (Enabler 6), Inference tools, and XR Unity applications. All tools
described were developed following stablished software engineering practices to foster
principles of open science, software sustainability and quality. They will also be
available as open-source repositories on GitHub.

According to the project workplan, the second sub-phase will focus on improving and
integrating enablers with applications. As per the plan, we will undertake actions to
improve and expand the functionality of enablers and integrate them with beacon
application(s), demonstrating, this way, how to integrate enablers with other
applications, including the open-call projects. The improvement effort will focus on
expanding the supported modalities (e.g., bio-measurements, body-tracking) and
including additional functionalities and trained models. Meanwhile, the integration
effort will focus on building an end-to-end system, including data input capture and
pre-processing components, Inference tools, Personalization tools, and a Unity
application. These improvements and integration progress for the enablers will be
presented in the second version of the deliverable in Month 26 of the project.

